

TRANSPORT ASSESSMENT

Panda Waste Facility, Ballymount

SYSTIA

DOCUMENT CONTROL SHEET

IDENTIFICATION TABLE	
Client/Project owner	Starrus Eco Holdings Ltd
Project	Panda Waste Facility, Ballymount
Study	Transport Assessment
Type of document	Report
Date	06/12/2023
Reference number	IE01T23B01 – SCO1
Number of pages	66

APPROVAL						
Version	Name		Position	Date	Modifications	
R002	Author	Glen Moon	Principal	30/11/2023	Planning Issue	
	Checked by	Steven Livingstone	Associate Director	06/12/2023		
	Approved by	Steven Livingstone	Associate Director	06/12/2023		

TABLE OF CONTENTS

1. II	NTRODUCTION	6
1.1	Overview	6
1.2	Scoping	8
1.3	POLICY AND GUIDANCE	8
1.4	REPORT STRUCTURE	8
2. T	RANSPORT BASELINE	9
2.1	INTRODUCTION	9
2.2	PEDESTRIAN, CYCLE AND BUS INFRASTRUCTURE	9
2.3	ROAD NETWORK	12
2.4	CITY EDGE PROJECT	14
2.5	SUMMARY	14
3. T	RAFFIC SURVEYS	15
4. T	HE EXISTING FACILITY	17
4.2	STAFF TRAVEL	17
4.3	WASTE OPERATIONS	18
5. T	HE PROPOSED DEVELOPMENT	20
5.1	PROPOSED SITE LAYOUT	20
5.2	SITE ACCESS	21
5.3	WASTE OPERATIONS	21
5.4	STAFF NUMBERS	21
5.5	HOURS OF OPERATION / SHIFT TIMES	21
5.6	Parking Provision	21
6. D	EVELOPMENT TRAVEL DEMAND	23
6.1	STAFF TRAVEL	23
6.2	WASTE OPERATIONS	23
7. T	RAFFIC IMPACT	25
7.1	INTRODUCTION	25
7.2	THRESHOLD ASSESSMENT	25
7.3	MODELLED JUNCTIONS	26
7.4	JUNCTION ASSESSMENT SOFTWARE	26
7.5	MODELLED TIME PERIODS	26

SYSTΓΑ

7.6	TRAFFIC SCENARIOS	26
7.7	MODEL RESULTS	27
7.8	JUNCTION MODELLING CONCLUSION	31
8. M	OBILITY MANAGEMENT PLAN (MMP)	32
8.1	INTRODUCTION	32
8.2	TARGETS	32
8.3	PROPOSED MMP ACTION PLAN MEASURES	32
8.4	MOBILITY MANAGER	32
8.5	MMP Actions	32
8.6	MMP MONITORING AND REVIEW	34
9. SI	IMMARY AND CONCLUSION	37
9.1	SUMMARY	37
9.2	CONCLUSION	37
APPE	NDIX A – TRAFFIC FLOW DIAGRAMS	38
APPE	NDIX B – SITE PLAN	63
APPE	NDIX C – JUNCTIONS 10 FILES	64
APPE	NDIX D – DRAWINGS	65

LIST OF FIGURES

Figure 1.	Site Location	6
Figure 2.	Primary traffic effects	7
Figure 3.	Pedestrian Infrastructure and Bus Services	9
Figure 4.	Footpaths and Bus Stops on Ballymount Road Upper	10
Figure 5.	Current cycle facilities	11
Figure 6.	Road Network	12
Figure 7.	Calmount Road / Ballymount Road Upper Roundabout	13
Figure 8.	Ballymount Road Upper / Lower / Turnpike Road Roundabout	13
Figure 9.	Recorded hourly traffic volumes by day on Calmount Road	15
Figure 10.	Existing Facility	17
Figure 11.	Existing profile of HGV trips (July 2023)	19
Figure 12.	Proposed Layout	20

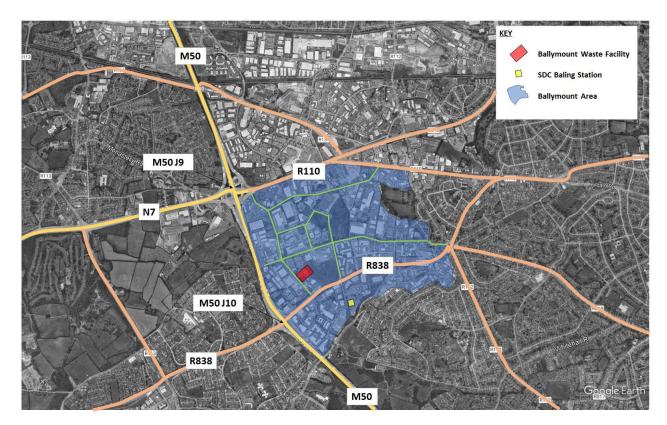

LIST OF TABLES

Table 1.	Daily Recorded HGV movements (July 2023)	7
Table 2.	Existing Staff / Visitor Vehicle Trips	18
Table 3.	Daily Recorded HGV movements (July 2023)	18
Table 4.	Existing and Future HGV movements	23
Table 5.	Threshold Assessment (Peak hours)	25
Table 6.	Calmount Rd / BRU roundabout results	28
Table 7.	BRU / BRL / Turnpike Rd roundabout results	30
Table 8.	Ballymount Road Upper / PANDA access results	31
Table 9.	MMP Actions	33

1. INTRODUCTION

1.1 Overview

- 1.1.1 Systra Ltd (SYSTRA) has been commissioned by Starrus Eco Holdings Ltd (SEHL) to provide transport and highways advice in relation to the proposed redevelopment of the existing multi-processing facility at Panda Waste, which is located on Ballymount Road Upper, in the Ballymount area of Dublin.
- 1.1.2 As shown in **Figure 1**, the 1.17ha site is located to the east of the M50, between Junctions 9 and 10. The Ballymount area is primarily occupied by industrial estates and business parks, with the nearest residential areas to the site being located on the eastern side of the M50, and to the south-east of the R838.

- 1.1.3 The facility currently operates 24/7, and processes 150,000 tonnes of waste per year, as permitted by its current EPA Licence. Under the proposals, the existing buildings on the site would be demolished, and replaced with a new building which would be capable of doubling this capacity.
- 1.1.4 As soon as the new facility is operational, the activites at the nearby Ballymount Civic Amenity Baling Station will be transferred to the site. The Baling Station currently processes in the region of c.190,000 tonnes of municipal solid waste. The overall effect of this change is shown in **Table 1**.

Facility	Tonnes waste / yr		
Facility	Existing Situation	Future Situation	
PANDA Facility	150,000	350,000	
Ballymount Civic Amenity Baling Station	190,000		
TOTAL	340,000	350,000	

- 1.1.5 **Table 1** shows that, taking both facilities into account, the amount of annual waste processed within the Ballymount area will be very similar.
- 1.1.6 The overall effect of the development will be to consolidate the operations of the existing Panda facility and Baling Station into one site. The overall number of HGV movements in the Ballymount area will be similar to those experienced at present, but there will be a redistribution of trips from Calmount Road to the north of Ballymount Road Upper, onto Ballymount Road Upper itself. This is shown in **Figure 2**.

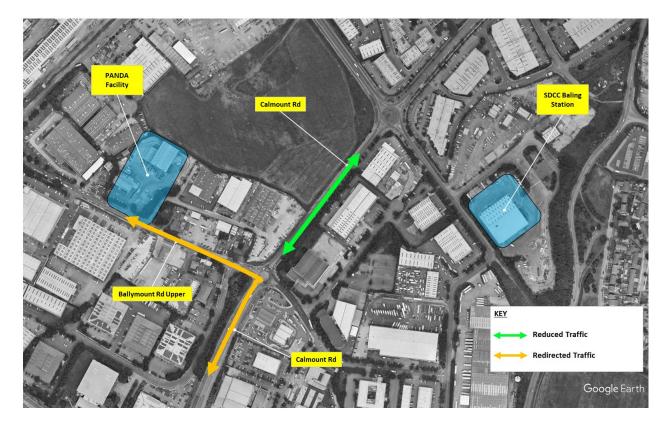


Figure 2. Primary traffic effects

- 1.1.7 The following documents have been produed by SYSTRA to support the application:
 - A Transport Assessment incorporating a Mobility Management Plan.
 - A Traffic and Transport Chapter as part of the Environmental Impact Assessment Report (EIAR).
 - An Outline Construction Traffic Management Plan (CTMP)
- 1.1.8 This Transport Assessment identifies the transport impacts of the proposals, and sets out how these impacts will be managed and mitigated.

1.2 Scoping

- 1.2.1 SYSTRA has consulted with South Dublin County Council's (SCCC) Roads Forward Planning team on the scope and requirements of this Transport Assessment. The main points to emerge from consultation were:
 - SDCC requested that the site access junction should be made as pedestrian friendly as it can be, and incorporate a refuge island if possible. The proposed final design has been remodelled, with a formal bellmouth being added, and dropped kerbs and tactile paving included. A refuge island was considered, but it was not possible to find a suitable design that would be able to safely accommodate HGV movements.
 - A separate pedestrian entrance into the site should be provided. This has been incorporated into the design, with a separate gate providing access to the site offices.
 - The proposals should complement / not conflict with the City Edge project. This is considered in **Section 2.4**.
 - The traffic impact, and redistribution effects, should be considered with the TA.

1.3 Policy and Guidance

- 1.3.1 This TA has generally been undertaken in accordance with the guidance contained within the following documents:
 - Project Ireland 2040: National Planning Framework (NPF).
 - Project Ireland 2040: National Investment Framework for Transport in Ireland (NIFTI).
 - Climate Action Plan 2023 (CAP).
 - Design Manual for Urban Roads and Streets 2018 (DMURS).
 - Dublin City Development Plan 2022-2028.
 - Greater Dublin Area Transport Strategy 2022-2042.
 - South Dublin County Development Plan 2022-2028 (SDCDP).
 - 'The City Edge Project: A Transformative Initiative for Dublin City' (https://cityedge.ie/)

1.4 Report Structure

- 1.4.1 Following this introductory chapter, the report will be structured as follows:
 - Chapter 2 Considers the existing transport network.
 - Chapter 3 Presents traffic survey results.
 - **Chapter 4** Describes the operation of the existing facility.
 - Chapter 5 Discusses the proposed development.
 - Chapter 6 Assesses the travel demand from the expanded facility.
 - **Chapter 7** Assesses the traffic impact of the development.
 - Chapter 8 Presented a Mobility Management Plan for the site.
 - Chapter 9 Provides a summary and conclusions.

2. TRANSPORT BASELINE

2.1 Introduction

2.1.1 This section sets out the transport baseline in the area, and considers pedestrian and cycling infrastructure, public transport services and the local road network.

2.2 Pedestrian, Cycle and Bus Infrastructure

2.2.1 The pedestrian network, and the closest bus stops in in the vicinity of the site, are shown in **Figure 3**.

Figure 3. Pedestrian Infrastructure and Bus Services

2.2.2 Footpaths are present on both sides of Ballymount Road Upper, between Calmount Road and Ballymount Road Lower. **Figure 4** indicates the general characteristics of these footpaths, looking from the area of the site towards the two bus stops, which are located 120m to the north-west of the site access junction.

SYSTIA

Figure 4. Footpaths and Bus Stops on Ballymount Road Upper

- 2.2.3 The footpaths on both sides of the road are less than 1.8m in width (the minimum specified in DMURS), but in SYSTRA's opinion are able to adequately accommodate the low levels of pedestrian activity on Ballymount Road Upper.
- 2.2.4 There are numerous entrances to businesses along Ballymount Road Upper. Where footpaths cross these entrances, dropped kerbs are typically present, but there is no tactile paving.
- 2.2.5 There are formal, but uncontrolled, pedestrian crossing points at both the Ballymount Road Upper / Ballymount Lower roundabout, and the Calmount Road / Ballymount Road Upper gyratory.
- 2.2.6 As shown in **Figure 3**, the nearest bus stops to the site are located 120m to the north-west of the site entrance. These simple pole stops are served by the Tallaght Ringsend Rd 56A bus service, which operates in both directions along this route. During the week, the service runs between 06:30 and midnight, at a frequency of ~75 minutes.
- 2.2.7 Cycle facilites in the area are shown in **Figure 5**.

Figure 5. Current cycle facilities

- 2.2.8 Cycle facilities in the area are currently limited to cycle lanes in both directions along Greenhill Road, and a short section of southbound cycle track along Calmount Road in the vicinity of the N50.
- 2.2.9 The proposed 'Greenhills to City Centre' Bus Connects Scheme would greatly improve bus and cycle connections in the area. This would incorporate a new link connecting Greenills Road with Calmount Road (via Calmount Avenue).
- 2.2.10 The CBC route would become a key corridor for new bus services and cycle movements beween Tallaght and the City Centre.

2.3 Road Network

2.3.1 The road network in the vicinity of the site is shown in **Figure 6**.

Figure 6. Road Network

- 2.3.2 The M50 passes within 500m of the site. This National Road forms a loop around the west of Dublin from north to south, and joins each of the major radial routes including the M1, M2, M3, M4, N7 and N11. From the site, Junction 10 of the M50 is accessed via Ballymount Road Upper, and then Calmount Road.
- 2.3.3 Calmount Road runs north-east from M50 J10. Between M50 J10 and Ballymount Road Upper, Calmount Road has two lanes in either direction, and a speed limit of 60km/h. To the north of Ballymount Road Upper, Calmount Road is a single carriageway.
- 2.3.4 Calmount Road ends in a dead-end 600m to the north-east of Ballymount Avenue, meaning that the route to the city centre from the site is via Calmount Road, Ballymount Avenue, and then Ballymount Road Lower.
- 2.3.5 The site is located on Ballymount Road Upper, which connects Calmount Road with Ballymount Road Lower. It is a single carriageway road with a speed limit of 60km/h, which provides access to numerous businesses that are located on both sides of the road.
- 2.3.6 The Calmount Road / Ballymount Road Upper junction is a non-signalised roundabout where the geometry does not allow east to west movemments onto Ballymount Road Upper, as shown in **Figure 7**.

SYSTΓΑ

Figure 7. Calmount Road / Ballymount Road Upper Roundabout

- 2.3.7 Yellow hatched markings are in place on the eastern side of the roundabout, which prevent traffic queuing southbound on Calmount Road from blocking west to east movements across the junction on Ballymount Road Upper.
- 2.3.8 The Ballymount Road Upper / Ballymount Road Lower / Turnpike Road roundabout is located at the western end of Ballymount Road Upper. It is a four-arm priority roundabout, with each entry arm comprising a single lane plus flare, as shown in **Figure 8**.

Figure 8. Ballymount Road Upper / Lower / Turnpike Road Roundabout

2.4 City Edge Project

- 2.4.1 The City Edge Project is a joint project that has been undertaken by SDCC and Dublin City Council (DCC). It is described as a 'transformative initiative' that aims to re-imagine the Naas Road, Ballymount and Park West areas at the western edge of Dublin City.
- 2.4.2 The overall aim of the project is to create a new urban quarter, with the potential for 40,000 new homes and 75,000 jobs, making it one of the largest regeneration schemes in Europe.
- 2.4.3 A Strategic Framework has been prepared setting out a high-level strategy for the future development. The strategy identifies that the City Edge area is well served by public transport the Luas, the Kildare Railway Line and frequent bus services as well as regional and national roads, but recognises that there is scope to significantly improve active and public transport infrastructure including:
 - New rail and Luas stations.
 - New bus routes.
 - New cycle lanes to support the existing and future population.
- 2.4.4 The following elements are of direct relevance to the Panda development:
 - An on-street cycle facility is proposed on Ballymount Road Upper. No further detail on this has yet been developed.
- 2.4.5 At the time of writing, the City Edge project is at an early stage, but the proposed Panda development is consistent with the framework that is proposed, which foresees an intensification of the area between Ballymount Avenue and the M50, which contains the Panda site. The development of the potential on-street cycle facility will not be affected by the proposed development.

2.5 Summary

- 2.5.1 The baseline review has identified the following key points:
 - There is a reasonable standard of pedestrian infrastructure in the local area, which in SYSTRA's opinion is able to adequately accommodate the low levels of pedestrian activity on Ballymount Road Upper.
 - The nearest bus stops are located within 120m of the site entrance. During the week, the 56A bus service runs between Tallaght and Ringsend at a frequency of ~75 minutes during the week.
 - Cycle facilities in the area are currently limited to cycle lanes in both directions along Greenhill Road, and a short section of southbound cycle track along Calmount Road in the vicinity of the N50.
 - The proposed 'Greenhills to City Centre' Bus Connects Scheme will greatly improve bus and cycle connections in the area, and would become a key corridor for new bus services and cycle movements between Tallaght and the City Centre.
 - The site enjoys excellent access to the strategic road network, being located within 700m of Junction 10 of the M50.
 - The route to the city centre from the site is via Calmount Road, Ballymount Avenue, and then Ballymount Road Lower.

3. TRAFFIC SURVEYS

- 3.1.1 SYSTRA commissioned classified Junction Turning Count (JTC) surveys at the following junctions:
 - The R838 Calmount Road / Ballymount Road Upper roundabout;
 - The site access junction on Ballymount Road Upper; and
 - The Ballymount Road Upper / Ballymount Road Lower roundabout.
- 3.1.2 The surveys were carried out on Wednesday 27th September, between 07:00 and 19:00. The recorded peak hours were:
 - AM peak: 08:00 09:00;
 - Interpeak: 12:15 13:15; and
 - PM peak: 16:00 17:00.
- 3.1.3 A full set out turning diagrams in included in **Appendix A**.
- 3.1.4 The AM peak hour was the busiest recorded period on Ballymount Road Upper, with southbound and northbound flows of 211 pcu and 987 pcu respectively passing the site entrance.
- 3.1.5 HGV flows across the network were 8.5% in the AM peak, 12.3% in the interpeak, and 6.5% in the PM peak hour.
- 3.1.6 In addition to the JTC surveys, an Automatic Traffic Counter (ATC) was in place for a 7-day period, located on Calmount Road to the south of the Ballymount Road Upper roundabout.
- 3.1.7 Figure 9 shows the recorded traffic volumes (two-way) on each survey day.

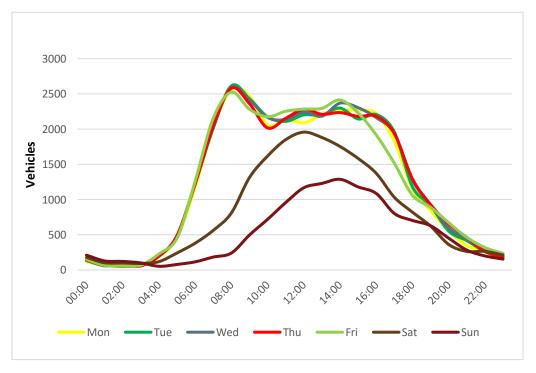


Figure 9. Recorded hourly traffic volumes by day on Calmount Road

3.1.1 **Figure 10** shows that during the week, traffic volumes peak between 08:00 and 09:00, then remain steady during the day until 17:00, reducing after this time.

3.1.2 The ATC data was used to check that traffic flows on Wednesday 27th September (the day of the JTC surveys) were representative of the other recorded weekdays, and also to calculate a factor to convert recorded 12-hour traffic flows to 24-hour AADF flows, for use in the EIAR assessment.

4. THE EXISTING FACILITY

Figure 10. Existing Facility

- 4.1.1 The existing facility comprises:
 - A one-storey waste processing building, with a floor area of ~1,600sqm
 - A two-storey office building, with a floor area of ~700sqm.
 - A 77-space car park.

4.2 Staff Travel

- 4.2.1 Prior to 2022, the following were employed at the Panda facility:
 - ~50 office staff, who were typically on site between 08:30 and 09:30.
 - ~45 processing facility staff, who covered the site 24/7, operating on a three-shift rota with ~15 staff being on site at any one time.
- 4.2.2 In 2023, the office staff were relocated to other sites in Dublin, meaning that only the processing staff are currently based on the site.
- 4.2.3 The majority of staff currently travel by car. Over the course of the 12hr survey (07:00 19:00), a total of 41 inbound and 69 outbound Car / LGV movements were recorded. The imbalance between inbound and outbound movements is due to the surveys not capturing the arrival of the night shift after 19:00.

Hour	Cars, LGV, MC		
starting	In	Out	
07:00	12	1	
08:00	10	4	
09:00	4	2	
10:00	1	4	
11:00	2	5	
12:00	2	6	
13:00	5	6	
14:00	3	6	
15:00	1	9	
16:00	2	14	
17:00	0	7	
18:00	0	5	
TOTAL	42	69	

 Table 2. Existing Staff / Visitor Vehicle Trips

4.2.4 Arriving and departing vehicles were spread relatively evenly over the 12-hr survey period, with slight peaks (of 21 vehicles) in both the morning (07:00 - 09:00) and evening (16:00 - 18:00).

4.3 Waste Operations

4.3.1 Information provided by SEHL from July 2023, which was a typical month on site, shows that on average there were 335 daily two-way HGV movements to and from the site, as shown in **Table 3**, Most deliveries to the site are by 25 tonne HGVs.

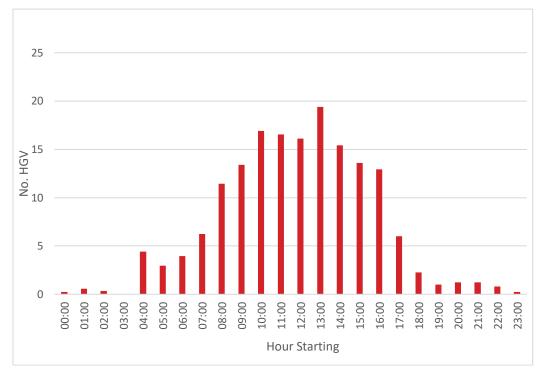

Day	Date	In	Out	Total
Mon	17/07/2023	169	169	338
Tue	18/07/2023	160	160	320
Wed	19/07/2023	176	176	352
Thu	20/07/2023	173	173	346
Fri	21/07/2023	162	162	324
Mon	24/07/2023	160	160	320
Tue	25/07/2023	166	166	332
Wed	26/07/2023	169	169	338
Thu	27/07/2023	177	177	354
Fri	28/07/2023	161	161	322
Average Weekday		167	167	335

 Table 3. Daily Recorded HGV movements (July 2023)

- 4.3.2 **Table 3** shows that there are an average of 167 inbound HGV deliveries on a typical weekday, resulting in 335 two-way trips.
- 4.3.3 Loading and unloading times vary depending upon the type of vehicle, and the materials that are being transported. A bulker vehicle typically takes 10 minutes to unload, and 20 minutes to load, whilst a typical HGV / skip vehicle can be unloaded in 2 minutes, and loaded in 5

SYSTΓΑ

minutes. However, all HGVs arriving at the site depart within the hour. Similarly, HGVs arriving to pick up a load will be loaded and depart within the same hour that they arrive.

4.3.4 **Figure 11** shows the recorded combined inbound and outbound profile of HGV trips to and from the site.

Figure 11. Existing profile of HGV trips (July 2023)

- 4.3.5 **Figure 14** shows that the peak period for HGV deliveries to and from the site is between 10:00 and 15:00, which is outside traditional road network peak hours. Noticeable HGV activity on the site commences around 04:00, and tails off after 17:00.
- 4.3.6 In terms of the distribution of HGV trips:
 - 50% arrived from Ballymount Road Upper to the north of the development, and 50% from the south.
 - 70% turned left on departure, and headed towards Calmount Road and the M50.
 - 30% turned right on departure, and headed towards Ballymount Road Lower and Turnpike Road.

5. THE PROPOSED DEVELOPMENT

5.1 **Proposed Site Layout**

- 5.1.1 The proposals would increase the tonnage of waste processed from 150,000 tonnes to 350,000 tonnes per year. This will require the redevelopment and modernisation of the facility, to enable it to deliver this increased throughput.
- 5.1.2 The proposed site layout is shown in Figure 12. A larger site plan is included in Appendix B.

5.1.3 The development will consist of:

- 0 Demolition of all existing buildings on the site.
- 0 Construction of a 4,710 sqm one-storey material recovery building, which will include an ancillary administration reception office, a canteen, WCs, and storage space.
- 5.1.4 As soon as the new facility is operational, the activites at the nearby Ballymount Civic Amenity Baling Station will be transferred to the site. The Baling Station currently processes in the region of 190,000 tonnes of municipal solid waste.
- 5.1.5 Taking the changes at both facilities into account, the amount of waste processed within the Ballymount area will be very similar.

5.1.6 The overall effect of the development will be to consolidate the operations of the existing Panda facility and Baling Station into one site. The overall number of HGV movements in the Ballymount area will be similar to those experienced at present, but there will be a redistribution of trips from Calmount Road to the north of Ballymount Road Upper, onto Ballymount Road Upper itself.

5.2 Site Access

- 5.2.1 A relocated access junction onto Ballymount Road Upper will be provided, and will be used by all vehicles accessing the site.Turning space is provided within the site to allow HGVs to enter and leave in a forward gear. Swept paths are shown in **Appendix D**. Visibility splays showing junction visibility, and visibility for drivers over the footway, are also included in **Appendix D**.
- 5.2.2 A separate pedestrian and cycle access into the site will be provided further to the north on Ballymount Road Upper. This will provide a safe entry and exist point for staff and visitors.

5.3 Waste Operations

- 5.3.1 All waste deliveries to and from the site will be coordinated by the transport manager, and arrive on a pre-determined schedule. This allows the site to operate smoothly, and ensures that demands can be managed throughout the day.
- 5.3.2 HGVs will enter the yard via the access junction. For bulk waste vehicles, three loading / unloading bays will be provided within the site. If no loading bays are free, then the vehicles will wait in one of the three marked spaces. Typical turnaround time for these vehicles will be between 6-20 minutes.
- 5.3.3 Skip vehicles will unload at different locations within the shed building, depending upon what type of materials they are transporting. Typical turnaround time for these vehicles will be between 2-8 minutes.

5.4 Staff numbers

5.4.1 There will be 20 staff employed on site, who will be split between production, cleaning and maintenance roles. It is expected that 10 people will be on site at any one time.

5.5 Hours of Operation / Shift Times

- 5.5.1 The site will operate in two main shifts:
 - 6am 3pm
 - 3pm midnight
- 5.5.2 Between midnight and 6am maintenance and cleaning will be carried out on site, and occasional deliveries may be received during this period.

5.6 Parking Provision

5.6.1 SDCC's County Development Plan (CDP) sets out maximum parking standards for different development types. There is no specific rate specified for a waste facility such as proposed. In the absence of this, the parking rate for 'Warehousing' has been applied to the development. Table 12.25 of the CDP states that for Warehousing in Zone 1, a maximum of

1 parking space per $100m^2$ shall be provided, which would equate to 47 parkings paces for the $4,710m^2$ facility.

- 5.6.2 In total, 43 car parking spaces would be provided, of which:
 - Three would be disabled spaces, which is 5% of total parking spaces.
 - Nine would be EV charging bays (including one of the above disabled spaces), which is 20% of the total parking spaces.
- 5.6.3 Twenty-four cycle parking spaces will be provided. These will be located in covered and secure bike stands outside the main warehouse entrance. SDCC's CDP requires a minimum of 1 long-term cycle space per 200m² GFA for Warehousing land uses, which equates to 24 spaces at the Panda facility.

6. DEVELOPMENT TRAVEL DEMAND

6.1 Staff Travel

- 6.1.1 The number of workers at the new facility, and their shift patterns, will be less than currently present on site. It is anticipated that just 10 staff members will be on site at any one time.
- 6.1.2 For the purposes of the traffic impact assessment, it has robustly been assumed that all staff members will arrive separately by car, which will create 10 inbound and 10 outbound vehicle trips across the full day, all of which will be outside peak network times, with the first shift arriving by 06:00 and departing at 15:00, and the second shift arriving for 15:00 and departing at midnight. All staff travelling to and from shifts will do so outside of 'traditional' network peak hours.
- 6.1.3 The accompanying Mobility Management Plan (MMP) aims to reduce the percentage of single-occupancy car trips, primarily in the short-term through the expansion of car-sharing within the business.

6.2 Waste Operations

6.2.1 The proposed development will have the capacity to process 350,000 tonnes of waste per year, just over double the current capacity. This will result in a proportionate increase of 133% in existing HGV movements to the site. The profile of deliveries will remain similar to present.
 Table 4 shows the existing and future inbound profile and volume of HGV traffic on a typical weekday.

Hour	Existing	Proposed
starting	Inbound	Inbound
00:00	0	1
01:00	1	1
02:00	0	1
03:00	0	0
04:00	4	10
05:00	3	7
06:00	4	9
07:00	6	15
08:00	11	27
09:00	13	31
10:00	17	39
11:00	17	39
12:00	16	38
13:00	19	45
14:00	15	36
15:00	14	32
16:00	13	30
17:00	6	14
18:00	2	5
19:00	1	2
20:00	1	3
21:00	1	3
22:00	1	2
23:00	0	1
TOTAL	167	390

Table 4. Existing and Future HGV movements

- 6.2.2 **Table 4** shows that with the development in place, there will be a total of 390 HGV arrivals (and therefore, departures), over the course of the 24-hour day. The busiest period for HGV trips is between 10:00 and 16:00, outside typical network peak hours.
- 6.2.3 Compared to current operations, in the AM (08:00 09:00) and PM (17:00 18:00) network peak hours, there will be 16 and 8 more more inbound HGV movements respectively, as a result of the development.

7. TRAFFIC IMPACT

7.1 Introduction

- 7.1.1 This section of the TA reports on the results of a threshold assessment, and subsequent junction capacity modelling exercise, which has assessed the impact of the development on the local road network. This considers:
 - The percentage increase on road links as a result of the development;
 - Existing junction performance;
 - The number of vehicle trips generated by the development, and where these trips are likely to arrive from / travel to; and
 - An allowance for background traffic growth.

7.2 Threshold Assessment

- 7.2.1 A threshold assessment on each of the links at the Calmount Road / Ballymount Road Upper junction, and the Ballymount Road Upper / Ballymount Road Lower junction was undertaken.
- 7.2.2 TII's 'Traffic and Transport Assessment Guidelines' (PE-PDV-02045, May 2014), state that a threshold approach should be used to establish the area of influence of the development. It states that, "In general, the study area should include all road links and associated junctions where traffic to and from the development may be expected to exceed 10% of the existing traffic movements, or 5% in congested or other sensitive locations, including junctions with national roads".
- 7.2.3 The Threshold Assessment only takes into account the additional traffic generated by the proposed development compared to current operations. Current operational traffic is captured in the baseline figures. The results of the Threshold Assessment are presented in Table 5.

Link	% impact		
LIIIK	AM	IP	PM
Turnpike Road	0.7%	0.9%	1.3%
Ballymount Rd Lower north of BRU	1.2%	1.5%	4.3%
Ballymount Rd Lower south of BRU	0.6%	0.3%	0.8%
Ballymount Rd Upper between BRL and Panda	1.9%	2.4%	5.3%
Ballymount Rd Upper between Panda and Calmount Re	2.7%	4.1%	3.3%
Calmount Rd north of BRU	-1.2%	-1.5%	-0.5%
BRU east of Calmount Rd	0.0%	0.0%	0.1%
Calmount Rd south of BRU	0.5%	0.9%	0.8%

Table 5. Threshold Assessment (Peak hours)

- 7.2.4 The assessment shows that the proposed development will lead increases of betweem 1.9% and 5.3% on Ballymout Road Upper in the AM, IP and PM peak hours. Projected increases on all other roads are less than 5%. Traffic flows on Calmount Road, north of Ballymount Road Upper, are expected to reduce due to traffic diverting from the existing Baler site.
- Table 2.1 of the TII's 'Traffic and Transport Assessment Guidelines' states that a TA is required when traffic to and from the developmetn exceeds 10% of the traffic on an adjoining road, or 5% where congestion exists, or the location is sensitive. In this instance, given the high

volumes of traffic on Calmount Road and Balymount Road Upper, further capacity analysis has been undertaken at the three key junctions on Ballymount Road Upper, as detailed in **Section 7.3**.

7.3 Modelled Junctions

- 7.3.1 The following junctions have been modelled:
 - Calmount Road / Ballymount Road Upper roundabout.
 - Ballymount Road Upper / Ballymount Road Lower / Turnpike Road roundabout.
 - Ballymount Road Upper / Site Access junction.

7.4 Junction Assessment Software

- 7.4.1 Junctions v10 (ARCADY module), an industry-standard software package, has been used to test each priority junctions.
- 7.4.2 The modelling reports on the Ratio of Flow Capacity (RFC) and the maximum forecast queue for each arm of the roundabout.
- 7.4.3 The RFC of an arm of a junction is one of the principal factors in influencing queues and delays. General engineering design principles, as set out in DMRB, suggest that when assessing a priority junction or roundabout, RFC levels on a given arm of a junction should not exceed 0.85 in order for that arm to operate within its 'practical' capacity. Should the RFC level exceed 1.0 then the junction is considered to be operating above its 'theoretical' capacity.
- 7.4.4 When the performance of an arm exceeds 1.0 RFC, the subsequent queue and delay information increases exponentially. In these instances, queue and delay values should not be compared between scenarios, it is enough to identify that the junction is performing operating significantly over capacity.

7.5 Modelled Time Periods

- 7.5.1 The following peak hours have been assessed, as identified in the 2023 survey.
 - AM Peak: 08:00 09:00;
 - Inter-peak: 12:15 13:15; and
 - PM Peak: 16:00 17:00.

7.6 Traffic Scenarios

- 7.6.1 Traffic flows have been calculated for the following scenarios:
 - Do Minimum 2025 (Year of Opening)
 - Do Something 2025
 - Do Minimum 2030 (Year of Opening + 5)
 - O Do Something 2030
 - O Do Minimum 2040 (Year of Opening + 15)
 - Do Something 2040

Do Minimum Scenarios

- 7.6.2 The future year Do Minimum scenarios include Background traffic growth. Base 2023 traffic flows have been factored to future year flows using guidance set out in the 'Project Appraisal Guidelines for National Roads Unit 5.3', specifically Table 6.2 'Link Based Growth Rates' for Dublin. The following combined factors have been calculated, based upon Central Growth Rates:
 - 2023 2026 (Year of Opening) 1.03
 - O 2023 − 2030 (YoO + 5) − 1.10
 - O 2023 − 2040 (YoO + 15) − 1.15

Do Something Scenarios

- 7.6.3 The Do Something scenarios comprise the Do Minimum traffic flows, with the additional traffic from proposed development added. Traffic arriving or departing via Calmount Road has been modelled as diverting from the Baling Site (which the development would replace). Traffic arriving or departing vial Ballymount Road to the west of the site has been treated as new trips on the network.
- 7.6.4 Development traffic has been distributed onto the network using observed turning proportions. Turning diagrams are included in **Appendix A**.

7.7 Model Results

Calmount Road / Ballymount Road Upper roundabout

- 7.7.1 A full set out model files is included in **Appendix C**.
- 7.7.2 **Table 6** presents the modelled results for Calmount Road / Ballymount Road Upper roundabout.

SYSTIA

Table 6.	Calmount Rd	BRU roundabout results
----------	-------------	------------------------

	AM peak hour (0800-0900)			Inter-p	peak hour (1215-	1315)	PM peak hour (1600-1700)		
Movement	Queue (pcu	Delay (s)	RFC	Queue (pcu)	Delay (s)	RFC	Queue (pcu)	Delay (s)	RFC
				Base 2	025				
Calmount Rd north	0.3	4.97	0.19	0.7	6.47	0.39	1.3	9.65	0.57
BRU east	0.3	3.63	0.21	0.8	5.97	0.43	1.6	10.65	0.61
Calmount Rd south	0	0.04	0.02	0	0.04	0.01	0	0.04	0.01
BRU west	0.6	10.04	0.33	1.4	9.51	0.56	2.2	11.11	0.68
				Base 2025	5 + Dev				
Calmount Rd north	0.2	4.99	0.17	0.6	6.51	0.37	1.3	9.85	0.57
BRU east	0.3	3.68	0.22	0.8	6.16	0.44	1.6	11.05	0.62
Calmount Rd south	0	0.04	0.02	0	0.04	0.01	0	0.04	0.01
BRU west	0.8	11.23	0.41	1.9	11.31	0.63	2.5	12.4	0.71
				Base 2	030				
Calmount Rd north	0.3	5.27	0.2	0.8	7.21	0.44	1.8	11.99	0.63
BRU east	0.3	3.76	0.23	1	6.66	0.47	2.2	14.27	0.69
Calmount Rd south	0	0.04	0.03	0	0.04	0.01	0	0.04	0.01
BRU west	0.6	10.2	0.39	1.8	11.33	0.61	3	14.2	0.74
				Base 2030) + dev				
Calmount Rd north	0.3	5.29	0.19	0.8	7.27	0.42	1.8	12.29	0.64
BRU east	0.3	3.82	0.23	1	6.91	0.48	2.3	14.99	0.7
Calmount Rd south	0	0.04	0.03	0	0.04	0.02	0	0.04	0.01
BRU west	0.9	11.69	0.47	2.5	13.92	0.69	3.6	16.33	0.78
				Base 2	040				
Calmount Rd north	0.3	5.58	0.22	0.9	7.88	0.47	2.2	14.37	0.68
BRU east	0.4	3.9	0.24	1.1	7.3	0.5	3	18.44	0.75
Calmount Rd south	0	0.04	0.03	0	0.04	0.02	0	0.04	0.01
BRU west	0.9	14.1	0.43	2.2	13.15	0.66	3.7	17.38	0.79
				Base 2040) + Dev				
Calmount Rd north	0.3	5.6	0.2	0.9	7.96	0.45	2.2	14.72	0.68
BRU east	0.4	3.96	0.25	1.2	7.6	0.51	3.1	19.56	0.76
Calmount Rd south	0	0.04	0.03	0	0.04	0.02	0	0.04	0.01
BRU west	1.3	16.52	0.52	3.1	16.68	0.73	4.6	20.56	0.82

Transport Assessment

PANDA Waste Facility, Ballymount

- 7.7.3 **Table 6** shows that the junction is expected to operate within capacity in each of the scenarios tested.
- 7.7.4 As shown by the slight increases in RFC in the '+ Dev' scenarios, the proposed development is predicted to have a very marginal impact on junction perfomance, and no mitigation is deemed to be required.

Ballymount Road Upper / Lower / Turnpike Road roundabout

Table 7 presents the modelled results for the Ballymount Road Upper / Lower / Turnpike Road

 roundabout

SYSTIA

	AM peak hour (0800-0900)			Inter-peak hour (1215-1315)			PM peak hour (1600-1700)		
Movement	Queue (pcu	Delay (s)	RFC	Queue (pcu)	Delay (s)	RFC	Queue (pcu)	Delay (s)	RFC
				Base 2	025				
BRL north	0.7	4.95	0.38	1.5	7.88	0.56	0.9	5.95	0.47
BRU	3	11.42	0.74	1.5	7.8	0.57	0.3	3.55	0.21
BRL south	0.3	4.95	0.2	0.4	4.82	0.25	0.3	3.46	0.21
Turnpike Rd	0.2	3.64	0.16	0.4	3.94	0.28	0.2	3.22	0.18
				Base 202	5 + Dev				
BRL north	0.7	5.18	0.4	1.7	8.63	0.6	1.1	6.49	0.51
BRU	3.2	11.83	0.75	1.6	7.97	0.58	0.4	3.73	0.25
BRL south	0.3	5.03	0.2	0.4	4.87	0.25	0.3	3.59	0.22
Turnpike Rd	0.2	3.69	0.17	0.4	4.03	0.29	0.2	3.31	0.19
				Base 2	030				
BRL north	0.7	4.93	0.41	1.8	9.04	0.61	1.1	6.66	0.51
BRU	4.2	14.98	0.81	1.9	9.13	0.62	0.3	3.79	0.22
BRL south	0.3	5.3	0.22	0.4	5.21	0.28	0.3	3.55	0.24
Turnpike Rd	0.2	3.35	0.17	0.5	4.15	0.3	0.2	3.31	0.19
				Base 2030	0 + dev				
BRL north	0.8	5.53	0.43	2.1	10.02	0.65	1.3	7.29	0.55
BRU	4.6	16.35	0.82	2	9.37	0.63	0.4	3.99	0.26
BRL south	0.3	5.52	0.23	0.4	5.28	0.28	0.3	3.69	0.25
Turnpike Rd	0.2	3.83	0.18	0.5	4.25	0.31	0.3	3.4	0.2
				Base 2	040				
BRL north	0.8	5.56	0.43	2.1	10.16	0.65	1.2	7.14	0.53
BRU	5.9	20.51	0.85	2.2	10.49	0.66	0.4	3.94	0.24
BRL south	0.3	5.83	0.24	0.5	5.58	0.3	0.3	3.66	0.25
Turnpike Rd	0.3	3.93	0.18	0.5	4.34	0.32	0.3	3.38	0.2
				Base 2040) + Dev				
BRL north	0.9	5.85	0.45	2.5	11.4	0.68	1.5	7.85	0.57
BRU	6.3	21.8	0.86	2.3	10.77	0.67	0.4	4.16	0.28
BRL south	0.4	5.95	0.25	0.5	5.65	0.3	0.4	3.81	0.26
Turnpike Rd	0.3	3.99	0.19	0.5	4.45	0.33	0.3	3.47	0.2

Table 7. BRU / BRL / Turnpike Rd roundabout results

Transport Assessment

- 7.7.5 **Table 7** shows that the junction is expected to operate within capacity in each of the scenarios tested, with the exception of the AM Base 2040 and AM Base 2040 + Dev scenarios, where the Ballymount Road Upper arm is expected to operate just above Practical Capacity.
- 7.7.6 The results show that this slight over-capacity is almost wholly down to existing traffic and expected traffic growth, rather than the very marginal increases due to the development. Given that this is more than 15 years in the future, and that national and regional transport policy, such as the Climate Action Plan 2023, aims to reduce the volume of vehicle kilometres by 2030, SYSTRA deem that no mitigation is required.
- 7.7.7 The long-term City Edge project will address economic development and transport infrastructure and demand at a strategic level in the area, which wil identify a structured framework for any transport improvements that are required.

Ballymount Road Upper / Panda Site Access juinction

7.7.8 **Table 8** presents the modelled results for Ballymount Road Upper / Panda Site Access priority junction.

	AM peak hour (0800-0900)			Inter-peak hour (1215-1315)			PM peak hour (1600-1700)		
Movement	Queue (pcu)	Delay (s)	RFC	Queue (pcu)	Delay (s)	RFC	Queue (pcu)	Delay (s)	RFC
Base 2025 + Dev									
Panda Exit LT	0.1	6.18	0.08	0.2	7.28	0.14	0.1	7.56	0.08
Panda Exit RT	0.1	12.33	0.05	0.1	12.9	0.05	0.2	11.73	0.14
BRU RT into Panda	0.3	3.41	0.13	0.3	4.18	0.13	0.1	5.28	0.05
				Base 2030	+ dev				
Panda Exit LT	0.1	6.23	0.08	0.2	7.42	0.14	0.1	7.75	0.08
Panda Exit RT	0.1	12.93	0.05	0.1	13.58	0.05	0.2	12.27	0.15
BRU RT into Panda	0.4	3.32	0.15	0.4	4.1	0.14	0.1	5.26	0.06
Base 2040 + Dev									
Panda Exit LT	0.1	6.26	0.08	0.2	7.5	0.14	0.1	7.88	0.08
Panda Exit RT	0.1	13.38	0.05	0.1	14.07	0.05	0.2	12.66	0.15
BRU RT into Panda	0.5	3.27	0.17	0.4	4.04	0.15	0.1	5.24	0.06

Table 8. Ballymount Road Upper / PANDA access results

7.7.9 **Table 8** shows that the junction is expected to operate within capacity in the 2025, 2030 and 2040 future year scenarios.

7.8 Junction Modelling Conclusion

7.8.1 The junction modelling exercise has tested the key junctions on Ballymount Road Upper, which would experience the biggest changes in traffic flow as a result of the development. The results demonstrate that the proposed development will have a very marginal impact on traffic flows and junction performance, and no mitigation measures are required.

8. MOBILITY MANAGEMENT PLAN (MMP)

8.1 Introduction

- 8.1.1 As part of the proposals, Beauparc is committed to developing and implementing a Mobility Mangement Plan (MMP).
- 8.1.2 The overall aim of the MMP is to reduce the level of private car use by encouraging people to walk, cycle, use public transport, car share.

8.2 Targets

- 8.2.1 The target of the ATP is a 10% reduction in the number of single occupancy car trips to the site, to be achieved by 2024. This target applies to staff and visitors and will be achieved by increasing the mode share percentage of sustainable travel alternatives, primarily cycling, bus use and car sharing.
- 8.2.2 The target of the ATP has been agreed with Beauparc, and is considered to be realistic but challenging.

8.3 Proposed MMP Action Plan Measures

- 8.3.1 To achieve the MMP targets set out above, a number of measures have been identified. These are:
 - Appointment a Mobility Manager.
 - Provision of a Welcome Travel Pack for residents.
 - The provision of clear pedestrian and cycle signage and maps throughout the site, showing travel times to key destinations
 - The provision of space for two bike hire hubs on the site.
 - Measures to encourage Public Transport use, including liaising with local bus operators regarding bus scheduling, routes and school travel.

8.4 Mobility Manager

8.4.1 A Mobility Manager will be appointed to deliver the MMP. The role involves being the main point of contact for travel information, promotion and improvements, and the coordination and monitoring of the agreed measures.

8.5 MMP Actions

8.5.1 **Table 9** sets out the Actions which will be implemented at the site over the next five years. The Actions are intended to work in tandem with any infrastructure measures proposed as part of the expansion programme in order to deliver the targeted reduction in single occupancy vehicle trips of 10%.

SYSTIA

		Table 9. MMP Actions					
	ACTION	DESCRIPTION					
	Governance						
1	Appointment of a Mobility Manager (MM)	A TPC will be appointed in Q2 2024.					
2	Transport Working Group (TWG)	Meetings will commence in 2024, prior to opening of the new facility. A suitable budget will need to be allocated to the implementation of the MMP and its associated measures.					
	Reducing the Need to Travel						
3	Investigate Business Travel	Commencing in 2024, The MM will, in conjunction with staff and management, will look at business travel measures such as pool cars to assess what would work well for the business and staff.					
4	Promote 'agile' working	Commencing in 2024 the TPC will explore the opportunities to promote 'agile' working within the company.					
5	IT infrastructure	In 2024 the TPC will seek to reduce the need for unnecessary business trips through promoting video / teleconferencing and promoting shared business travel, where applicable.					
	Active Travel						

6	Travel Options Noticeboard	The MM will provide active travel information in a prominent location. This will include bus timetable information and material, promoting the health, social and economic benefits of walking and cycling This should be in place for opening of the new facility.
7	Journey sharing	The MM will seek to introduce a journey-sharing scheme, so it is possible for staff to share walking, cycling and public transport trips also. This should be in place for opening of the new facility.
8	Cycle parking, shower & changing facilities	The introduction of infrastructure at the site should be undertaken as part of the redevelopment plans and should be in place for opening of the new facility.
9	Cycle to Work Scheme	In 2024, the MM will discuss with the Senior Management Team the possibility of introducing a Cycle-to-Work scheme for staff. The target date for scheme introduction would be the start of the 2025/6 financial year.
10	Travel Ticket Loan Scheme	In 2024, the TPC will discuss with the Senior Management Team the possibility of introducing a Travel Ticket Loan scheme for staff. The scheme would be rolled out in 2025 if approved.

SYSTIA

	ACTION	DESCRIPTION						
	Managing Car Use							
11	Car sharing scheme.	In 2024 the TPC will introduce a car sharing scheme for staff either as a bespoke Beaupark scheme or through the promotion of a third party provider's scheme. Subsequent reviews will consider the effectiveness of the scheme and opportunities for providing dedicated car sharing spaces.						
		Strategic Communications						
12	Contact details	In order to field questions from staff and visitors, contact details for the identified TPC will be established and promoted. Contact details will be provided as soon as the TPC is appointed.						
13	Website	In 2024, the corporate website should be updated to include up to date information on accessing the site by a range of transport modes. The website should include a statement encouraging visitors to travel by sustainable modes wherever possible.						
14	Staff recruitment & Induction	In 2024 the MM will ensure that information regarding the MMP and the travel options available are communicated during recruitment of new staff.						
15	Staff manual	In 2024 the MM will review the staff manual to ensure it supports the Aims, Targets and Actions of the MMP						

8.6 MMP Monitoring and Review

- 8.6.1 This section sets out the monitoring strategy for the Mobility Management Plan. The monitoring strategy is important for assessing how effectively the MMP has been in achieving its aim, objectives and targets. It can help identify measures that are not meeting objectives and reallocate resources accordingly.
- 8.6.2 An MMP is a continuous and evolving document requiring monitoring, review and revision to ensure that it remains relevant.

Travel Survey

- 8.6.3 It is recommended that a travel survey of employees is undertaken six months prior to the completion of the new facility. The results of the survey will identify baseline travel patterns in terms of modes used and the sustainable transport modes which require encouragement through the MMP measures.
- 8.6.4 The results of the survey will be used to inform the development of the finalised MMP targets and measures. The survey is designed to identify the distribution and mode share of trips from the development. The survey will also identify people's willingness and ability to try new modes, and what barriers they may face in making Smarter Travel choices.

Annual Monitoring

- 8.6.5 The Mobility Manager will carry out annual follow-up travel surveys with employees. These surveys should take place in the same month and be of the same format as the original baseline survey to ensure compatibility of results.
- 8.6.6 This monitoring is an opportunity to measure MMP achievements on an annual basis. This will then inform the ongoing development of the MMP, ensuring its targets and measures remain relevant to the needs of the residents, is site-specific and fit for purpose. Results will be analysed to enable the following:
 - Measurement of the success of the MMP, enabling focused improvement on areas that have not achieved the desired modal shift via appropriate revisions to the MMP measures.
 - Identification of early success stories of the MMP, which can help to encourage further participation and build momentum for sustainable travel.
 - Ensures that changing travel patterns are considered, ensuring that the MMP measures can be updated to reflect the needs of development users.
 - Allows targets which have been set too low or unrealistically high to be readjusted.

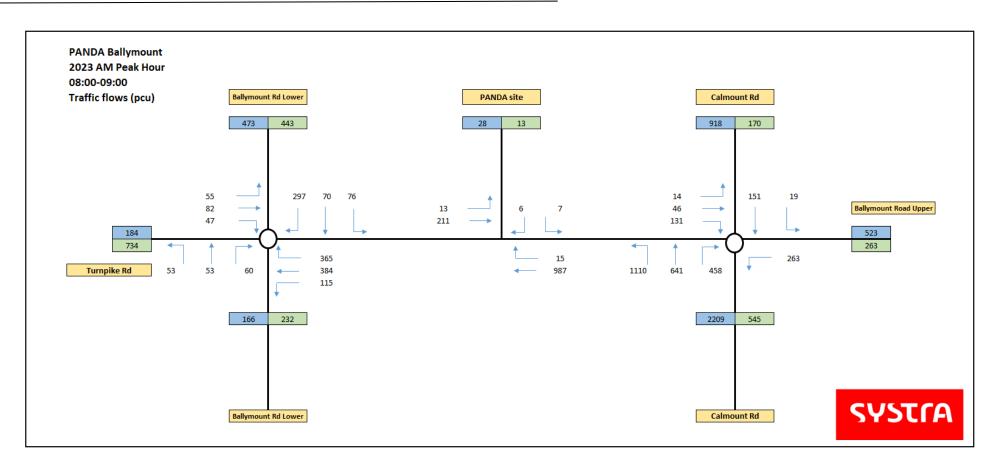
Reporting

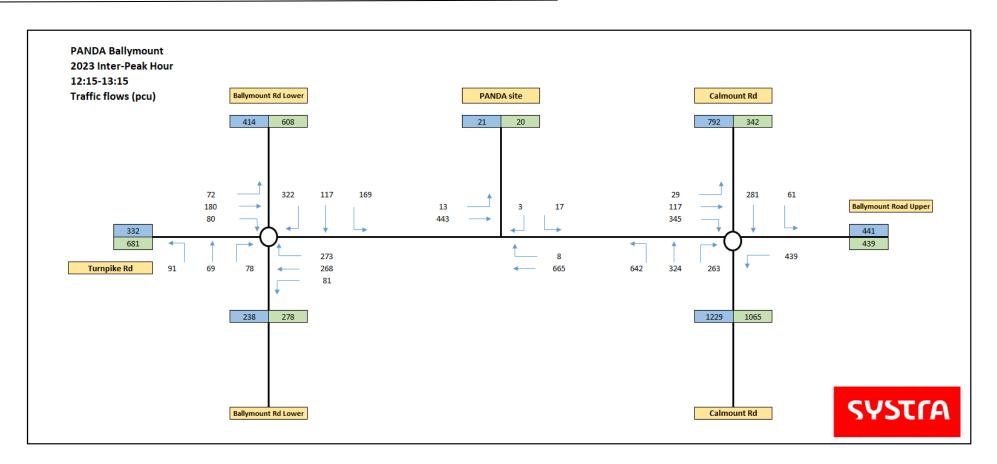
8.6.7 Reporting of the results of the Post-Occupation Baseline Travel Survey, and findings from the ongoing monitoring activities and progress with implementation of the MMP will be agreed with SDCC.

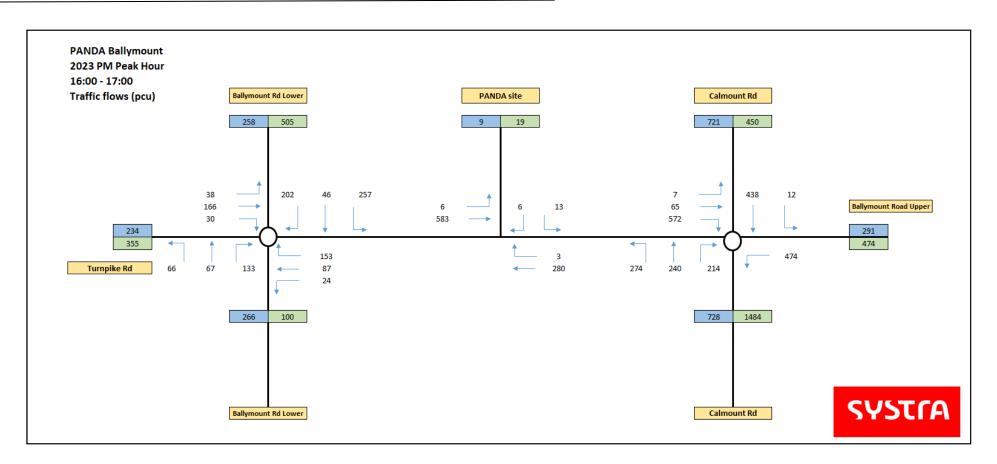
8.6.8 All Actions will be agreed with the TWG and would be implemented over a five-year period. Actions will be reviewed and updated on a yearly basis to ensure they remain resource efficient and relevant to staff needs.

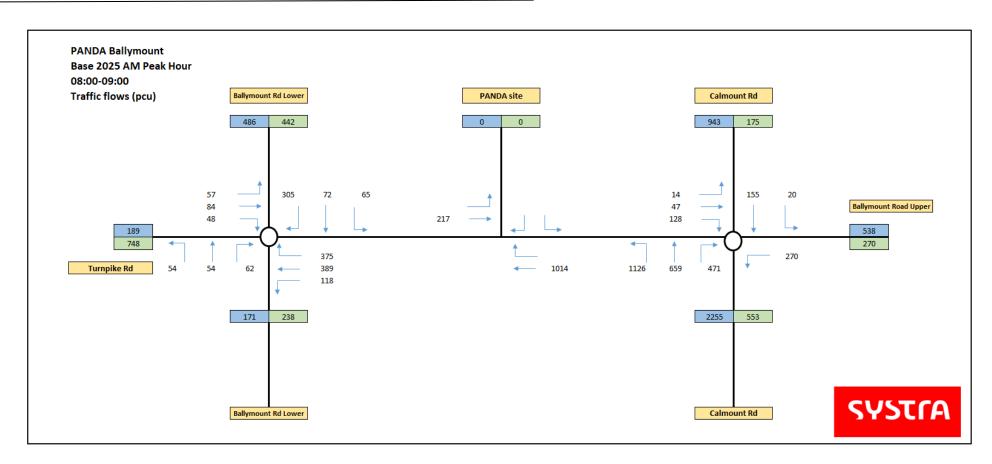
9. SUMMARY AND CONCLUSION

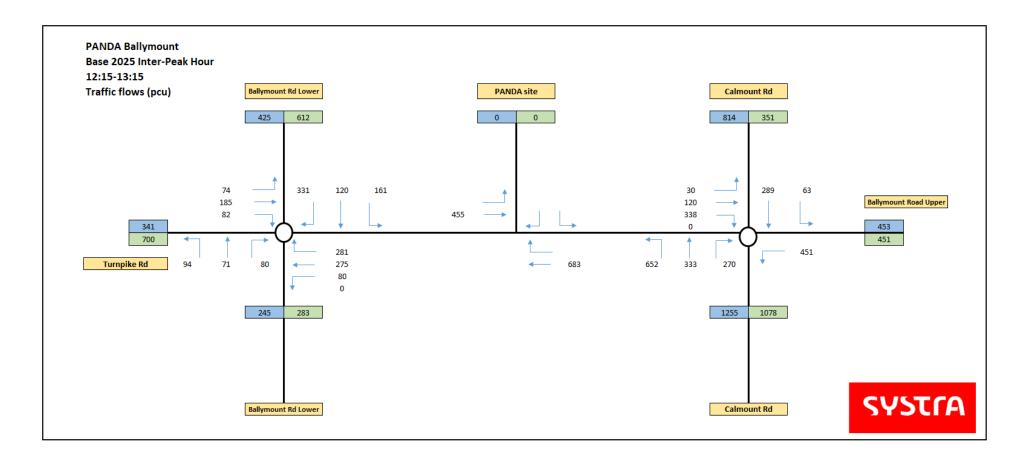
9.1 Summary

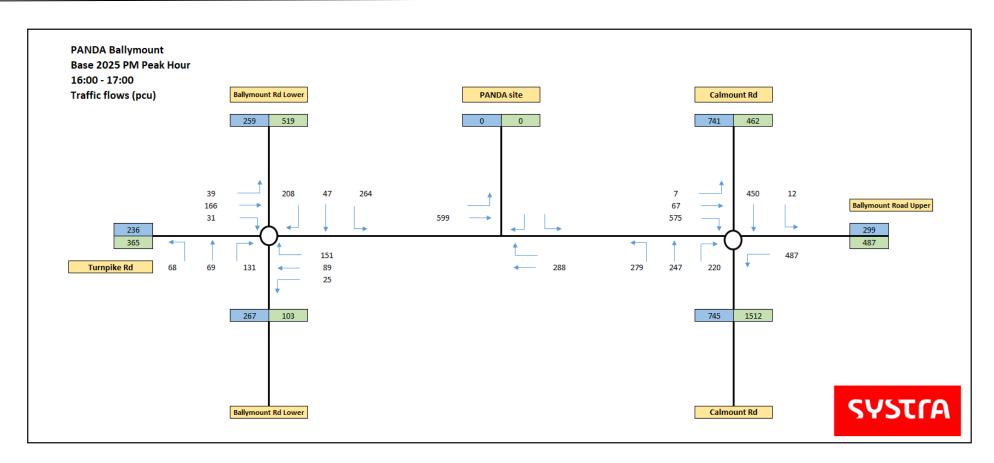

- 9.1.1 Systra Ltd has been commissioned by Starrus Eco Holdings Ltd (SEHL) to provide transport and highways advice in relation to the proposed redevelopment of the existing multiprocessing facility at Panda Waste, which is located on Ballymount Road Upper, in the Ballymount area of Dublin.
- 9.1.2 The facility currently operates 24/7, and processes 150,000 tonnes of waste per year, as permitted by its current EPA Licence. Under the proposals, the existing buildings on the site would be demolished, and replaced with a new building with a processing capacity of 350,000 tonnes.
- 9.1.3 As soon as the new facility is operational, the activites at the nearby Ballymount Civic Amenity Baling Station will be transferred to the site, and the use of that site ceased in line with its future strategic objectives. The overall effect of the development will be to consolidate the operations of the existing Panda facility and Baling Station into one site
- 9.1.4 The site enjoys excellent access to the strategic road network, being located within 700m of Junction 10 of the M50.
- 9.1.5 The development will consist of:
 - Demolition of all existing buildings on the site.
 - Construction of a 4,710 sq m one-storey material recovery building, which will include an ancillary administration reception office, a canteen, WCs, and storage space.
- 9.1.6 There will be 20 staff employed on site, who will be split between production, cleaning and maintenance roles. It is expected that 10 people will be on site at any one time.
- 9.1.7 The transport impacts of the proposals will be to increase numbers of HGV trips travelling to and from the site on Ballymount Road Upper, which will primarily divert from Calmount Road to the north. HGV trips will with a similar daily profile to existing operations. Staff travel demand will be lower than current levels.
- 9.1.8 The number of HGVs travelling to and from the site will be twice the current level, with an estimated 390 inbound, and 390 outbound trips over the course of a typical weekday.
- 9.1.9 Analysis shows that the development will result in an increase in vehicle trips on Ballymount Road Upper of no more than 5% the in the AM, IP and PM peak hours. Traffic impacts on other roads are expected to result in increases in flow of less than 5%.
- 9.1.10 Junction capacity assessment demonstrates that the proposed development will have a very marginal impact on traffic flows and junction performance, and no mitigation measures are required.

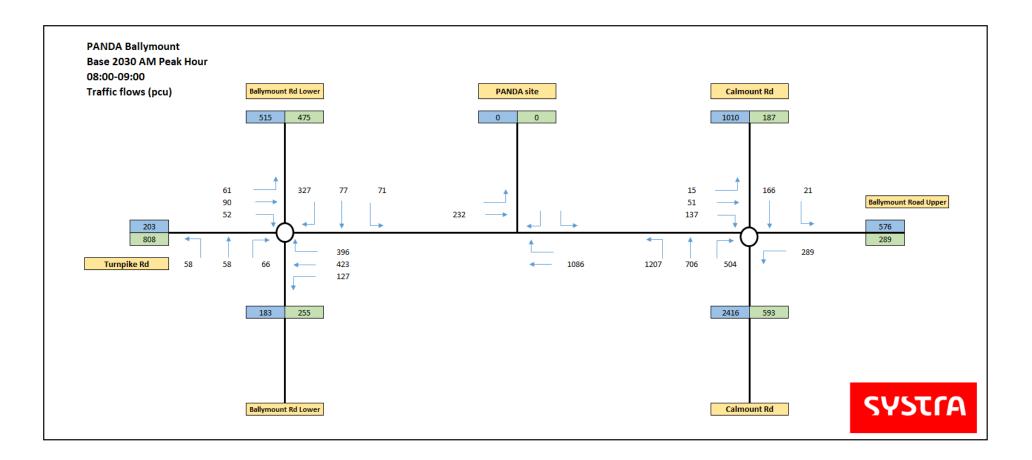

9.2 Conclusion

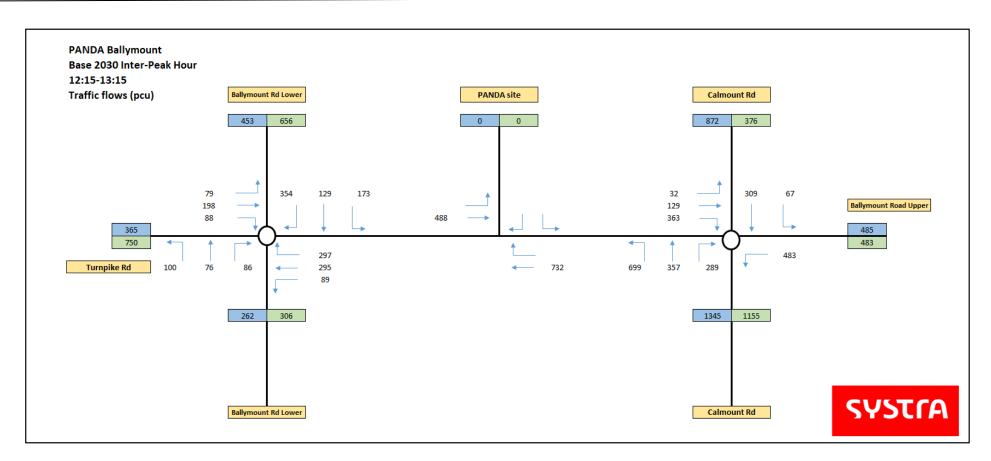

9.2.1 The Transport Assessment has found that the proposed development can be accommodated without any changes to the surrounding transport network.

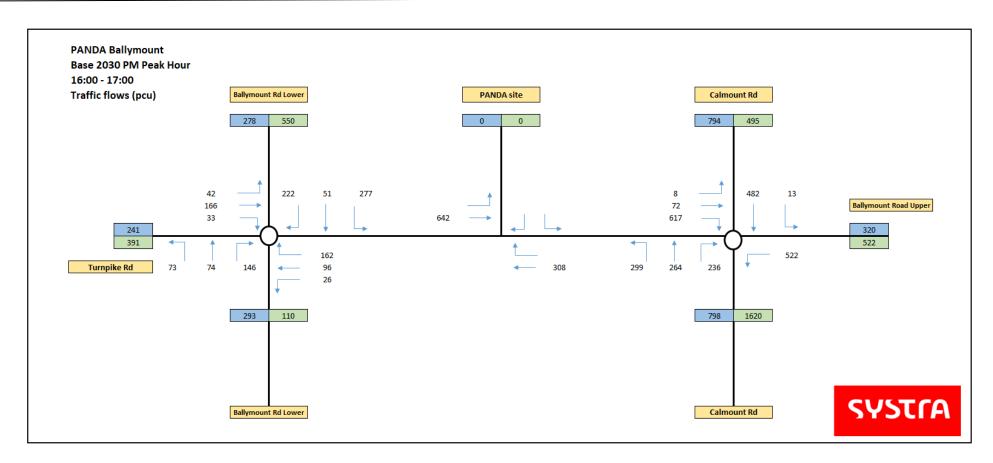


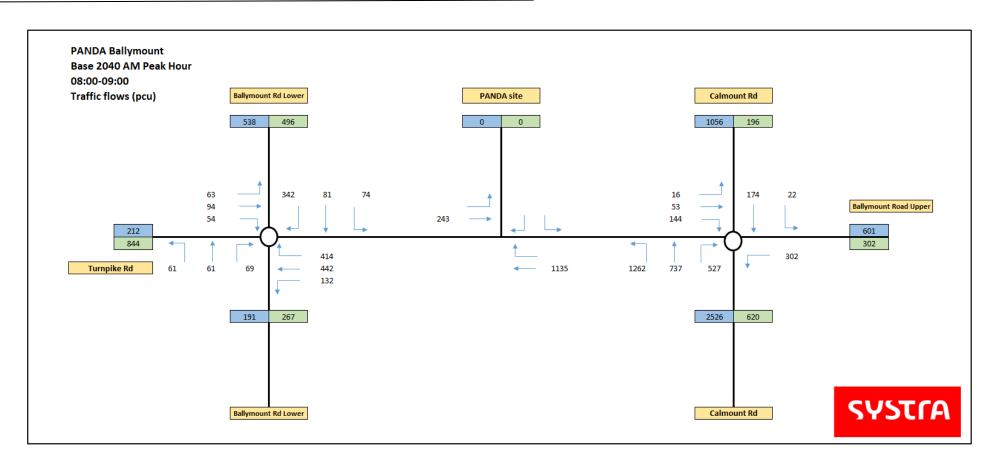

APPENDIX A – TRAFFIC FLOW DIAGRAMS

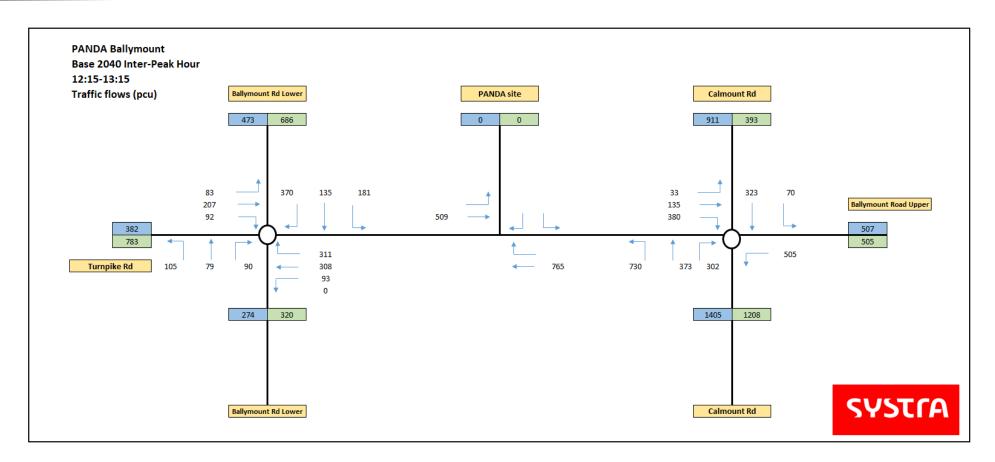


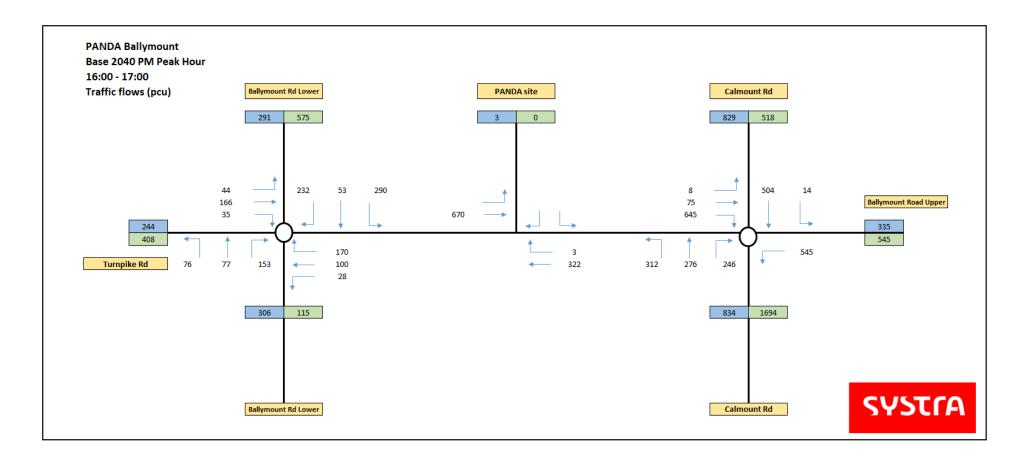


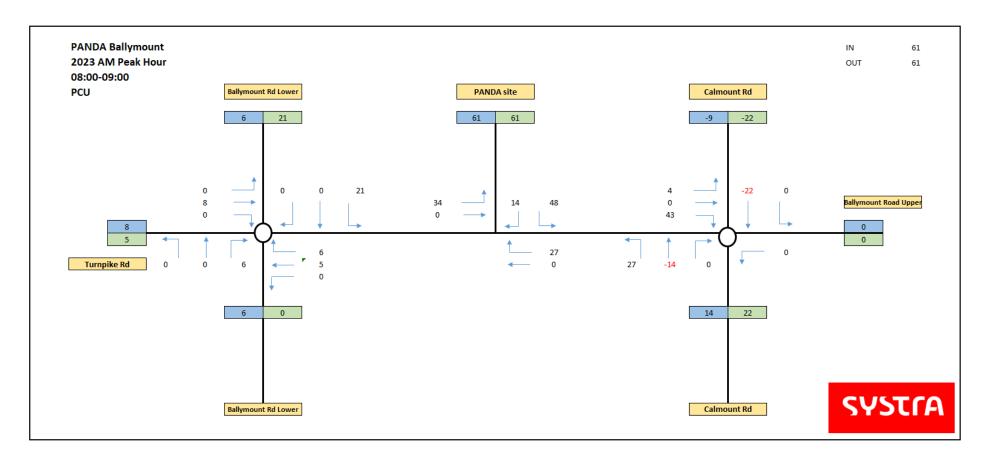


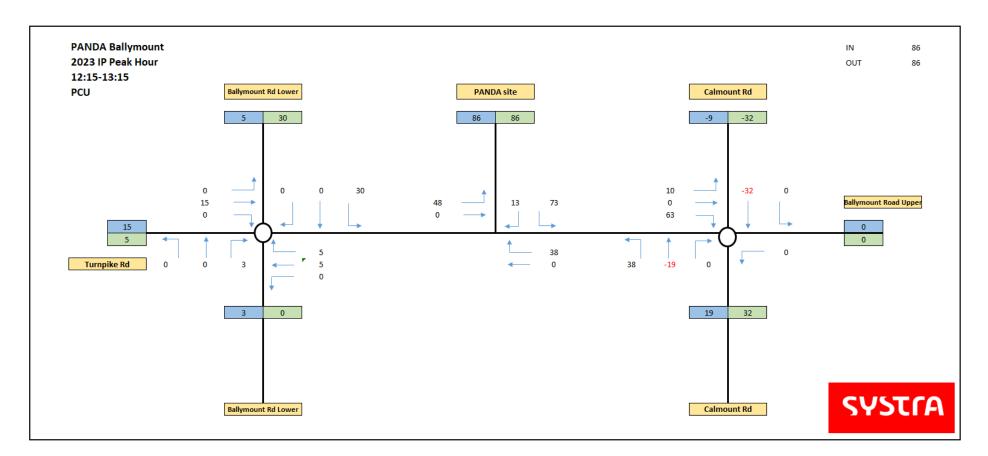


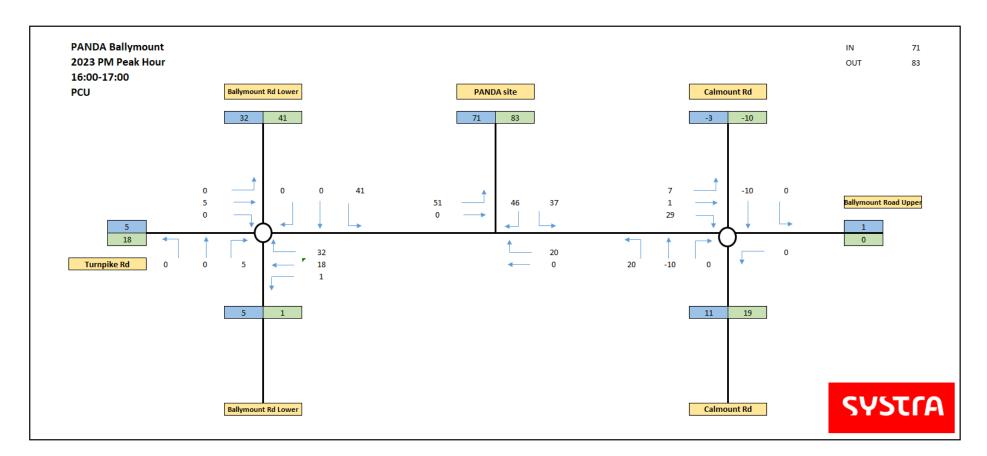


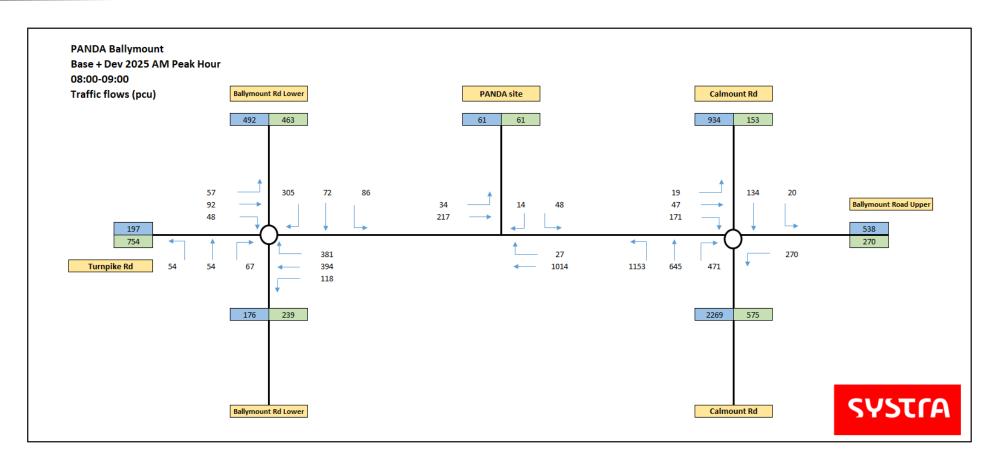


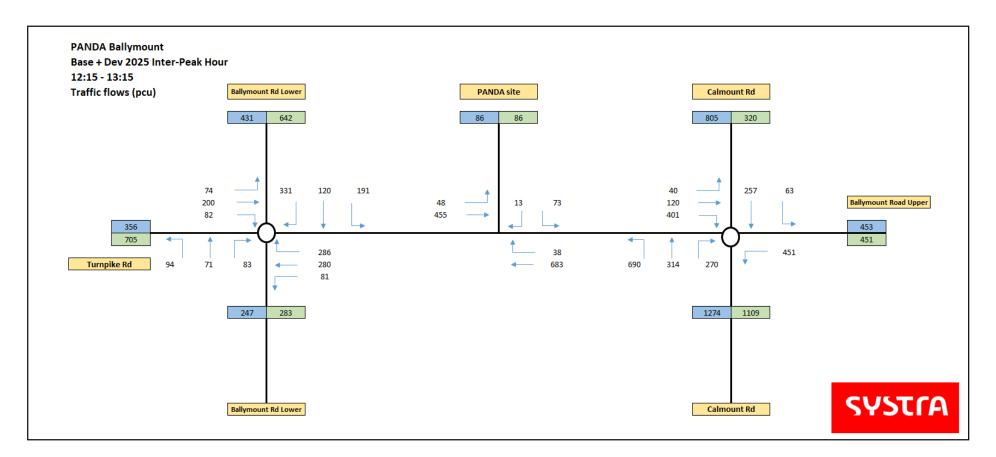


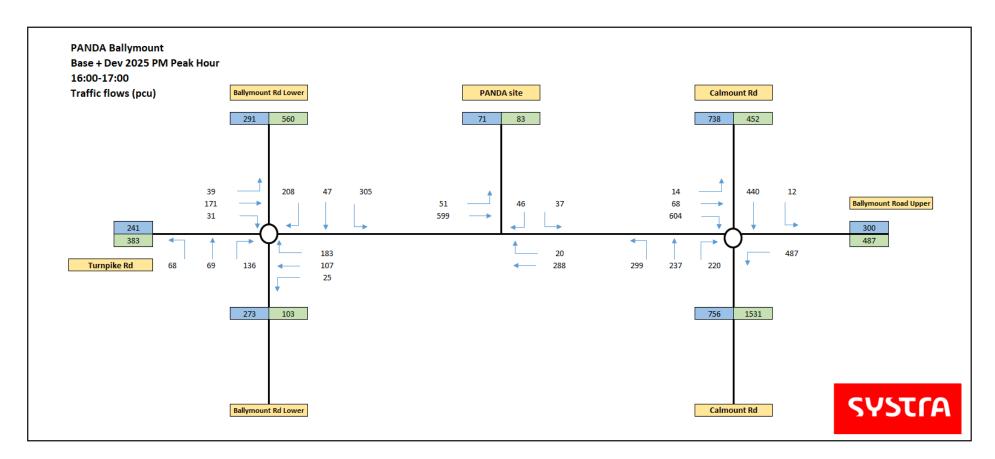


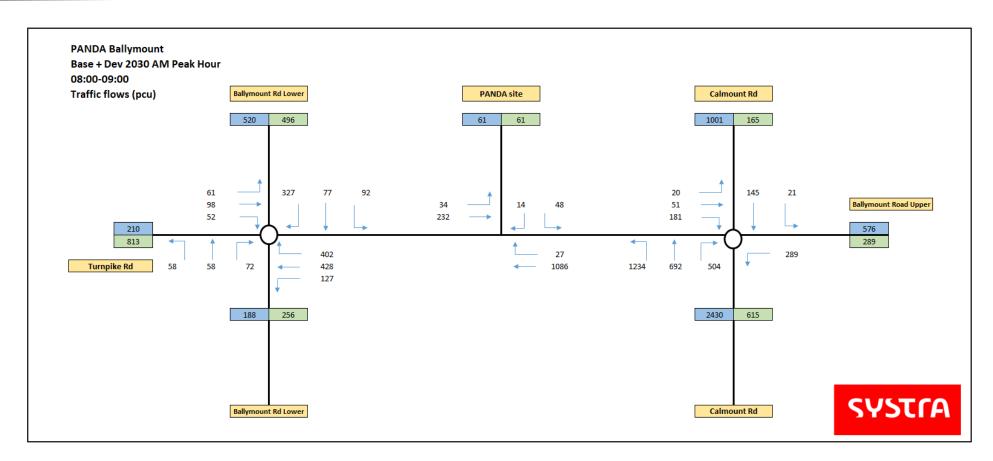


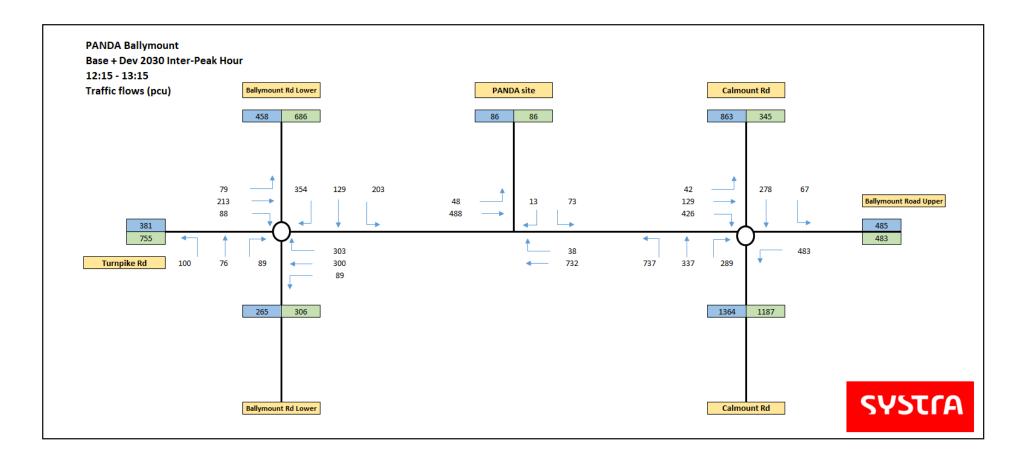


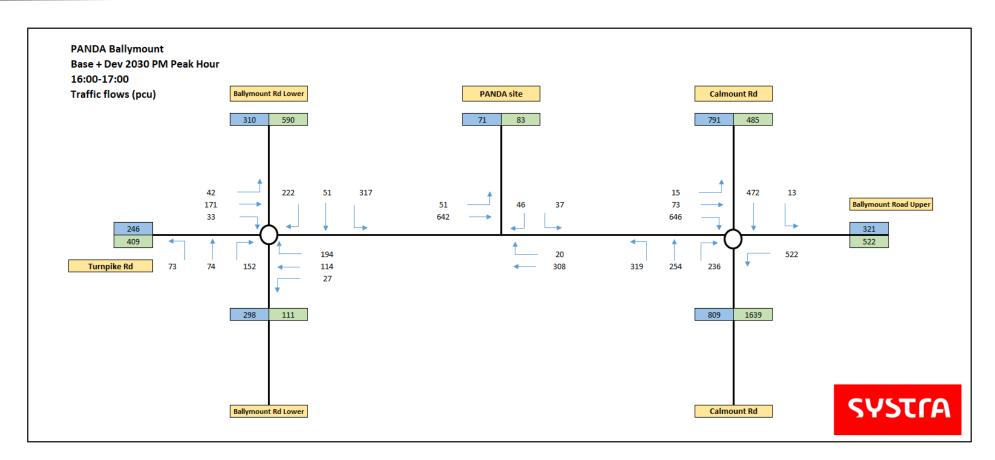


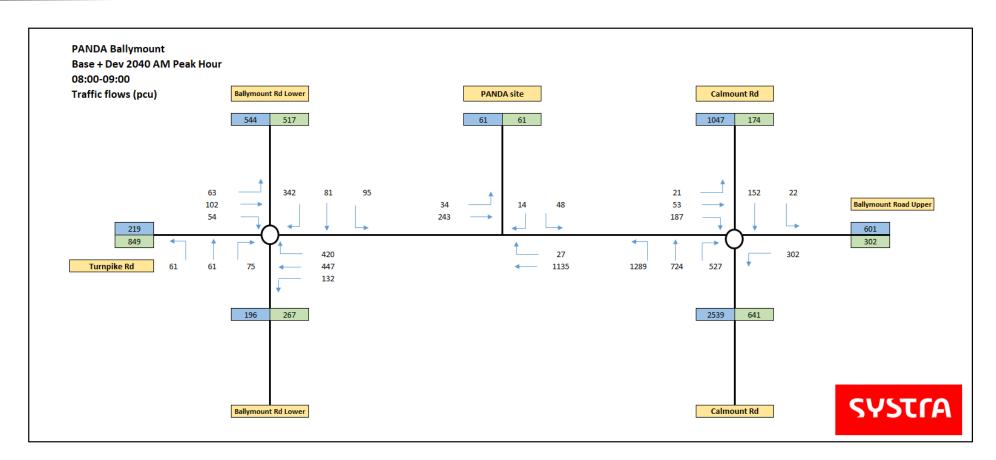


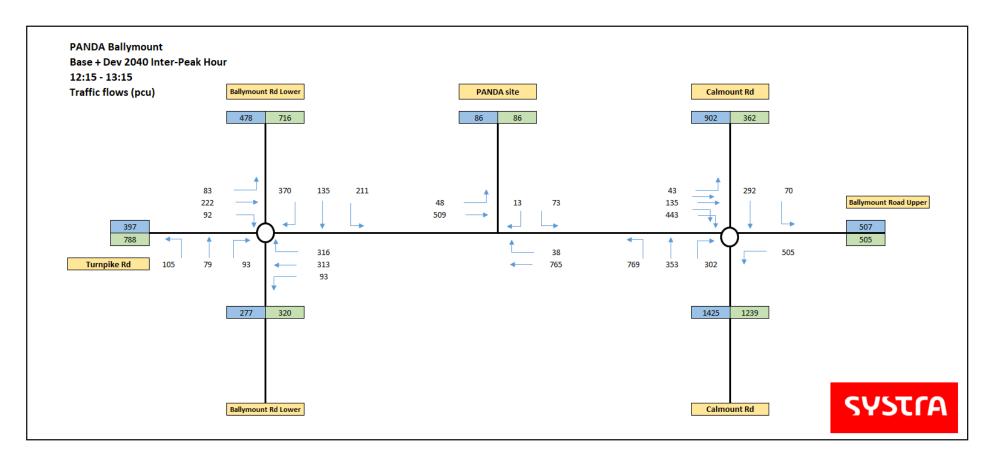


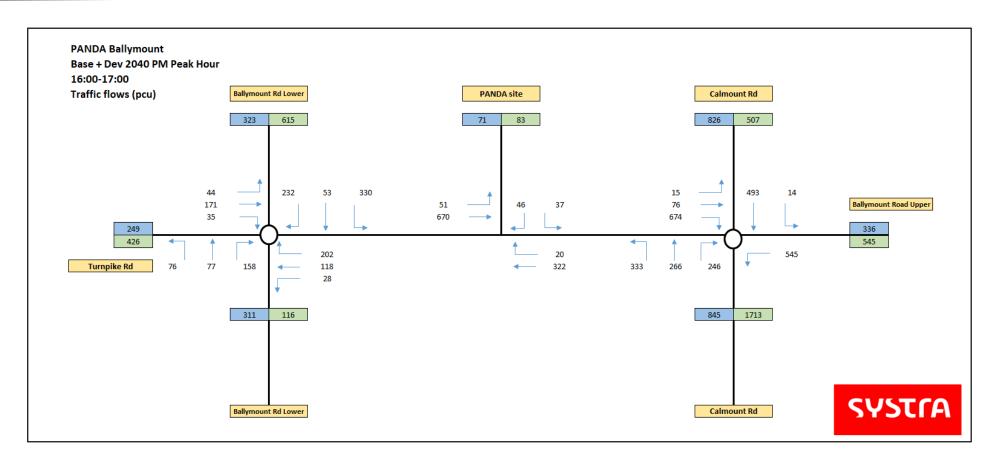












APPENDIX B – SITE PLAN

INFORMATION

© ORS

This drawing and any design hereon is the copyright of the Consultants and must not be reproduced without their written consent. All drawings remain the property of the Consultants.

Figured dimension only to be taken from this drawing. All dimensions to be checked on site. Consultants to be informed immediately of any discrepancies before work proceeds.

REV NO:	DATE:	REVISION NOTE:	DWN BY:	CKD BY:
P01	10/05/2023	ISSUED FOR COMMENT	СВ	СВ
P02	12/06/2023	SITE LAYOUT UPDATED	СВ	СВ
P03	12/07/2023	BUILDING AND SITE LAYOUT UPDATED	СВ	СВ
P04	28/08/2023	BUILDING LAYOUT UPDATED	СВ	СВ
P05	02/10/2023	ISSUED FOR COMMENT	СВ	СВ
P06	01/12/2023	ISSUED FOR PLANNING	СВ	СВ

REQUIRE 47.1 43 2.15 3 . 8.6 9
2.15 3 8.6
8.6
8.6
8.6
8.6
9
23.55
24
\searrow

CLIENT:	STARRU	STARRUS ECO HOLDINGS LIMITED (SEHL)					
PROJECT:	BALLYMO	BALLYMOUNT ROAD UPPER, DUBLIN 24					
TITLE:	PROPOS	PROPOSED SITE LAYOUT					
DRAWN:	CHECKED:	APPROVED:	JOB NO:	REV:			
СВ	CB	OD	221244				
DATE: 01/12/202	23 SCALE:	500	DRAWING NO: 221244-ORS-Z0-00-DR-AR-203	- P06			

Mullingar | Dublin | Galway | Donegal T: +353 1 5242060 | W: www.ors.ie | E: info@ors.ie ISO 9001:2015 QUALITY ASSURED COMPANY

APPENDIX C – JUNCTIONS 10 FILES

Filename: Ballymount Road Lower_ Turnpike Road Roundabout.j10 **Path:** \\GLASGOWFILE\Jobs\SCT\2023\T&T\Panda Waste Facility, Ballymount\5. Technical\5. Modelling\Junctions 10 **Report generation date:** 28/11/2023 17:24:28

«2040 + Dev, PM »Junction Network »Arms »Traffic Demand »Origin-Destination Data »Vehicle Mix »Results

Summary of junction performance

	AM				I	Р				Р	M				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
						-	20	25			-				
Arm 1		0.7	4.95	0.38	А		1.5	7.88	0.56	А		0.9	5.95	0.47	A
Arm 2		3.0	11.42	0.74	В	Da	1.5	7.80	0.57	А	Da	0.3	3.55	0.21	А
Arm 3	D1	0.3	4.95	0.20	А	D2	0.4	4.82	0.25	А	D3	0.3	3.46	0.21	А
Arm 4		0.2	3.64	0.16	А		0.4	3.94	0.28	А		0.2	3.22	0.18	А
							2025	+ Dev							
Arm 1		0.7	5.18	0.40	А		1.7	8.63	0.60	А		1.1	6.49	0.51	A
Arm 2	D1	3.2	11.83	0.75	В	DC	1.6	7.97	0.58	А	DC	0.4	3.73	0.25	А
Arm 3	D4	0.3	5.03	0.20	А	D5	0.4	4.87	0.25	А	D6	0.3	3.59	0.22	А
Arm 4		0.2	3.69	0.17	А		0.4	4.03	0.29	А		0.2	3.31	0.19	А
							20	30							
Arm 1		0.7	4.93	0.41	А		1.8	9.04	0.61	А		1.1	6.66	0.51	A
Arm 2		4.2	14.98	0.81	В	Da	1.9	9.13	0.62	А	DO	0.3	3.79	0.22	А
Arm 3	D7	0.3	5.30	0.22	А	D8	0.4	5.21	0.28	А	D9	0.3	3.55	0.24	А
Arm 4		0.2	3.35	0.17	А		0.5	4.15	0.30	А		0.2	3.31	0.19	А
							2030	+ Dev				-			
Arm 1		0.8	5.53	0.43	А		2.1	10.02	0.65	В		1.3	7.29	0.55	A
Arm 2	D10	4.6	16.35	0.82	С	D11	2.0	9.37	0.63	А	D12	0.4	3.99	0.26	А
Arm 3	010	0.3	5.52	0.23	А		0.4	5.28	0.28	А	DIZ	0.3	3.69	0.25	Α
Arm 4		0.2	3.83	0.18	А		0.5	4.25	0.31	А		0.3	3.40	0.20	А
							20	40							
Arm 1		0.8	5.56	0.43	А		2.1	10.16	0.65	В		1.2	7.14	0.53	A
Arm 2	D13	5.9	20.51	0.85	С	D14	2.2	10.49	0.66	В	D15	0.4	3.94	0.24	А
Arm 3	013	0.3	5.83	0.24	А	014	0.5	5.58	0.30	А	015	0.3	3.66	0.25	А
Arm 4		0.3	3.93	0.18	А		0.5	4.34	0.32	А		0.3	3.38	0.20	А
							2040	+ Dev							
Arm 1		0.9	5.85	0.45	А		2.5	11.40	0.68	В		1.5	7.85	0.57	A
Arm 2	DIG	6.3	21.80	0.86	С	D17	2.3	10.77	0.67	В	D10	0.4	4.16	0.28	А
Arm 3	D16	0.4	5.95	0.25	А	D17	0.5	5.65	0.30	А	D18	0.4	3.81	0.26	А
Arm 4		0.3	3.99	0.19	А		0.5	4.45	0.33	А		0.3	3.47	0.20	А

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	PANDA, Ballymount
Location	
Site number	
Date	05/10/2023
Version	
Status	(new file)
Identifier	
Client	Beauparc
Jobnumber	
Enumerator	ADSYSTRA\cgow
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Analysis Set Details

IDNetwork flow scaling factor (%)A1100.000

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D18	2040 + Dev	PM	ONE HOUR	15:45	17:15	15

2040 + Dev, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	Arm 3 - Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
1	BRL / BRU / Turnpike Rd	Standard Roundabout		1, 2, 3, 4	5.47	А

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS	
Left	Normal/unknown	5.47	А	

Arms

Arms

Arm	Name	Description	No give-way line
1	BRL N		
2	BRU		
3	BRL south		
4	Turnpike Rd		

Roundabout Geometry

Arm	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
1	3.68	6.10	9.0	23.0	38.0	50.0		
2	4.50	5.73	14.0	24.9	36.0	42.0		
3	4.50	6.32	44.0	17.6	38.0	55.0		
4	3.70	6.31	24.4	30.4	38.0	44.0		

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm	Final slope	Final intercept (PCU/hr)
1	0.569	1413
2	0.620	1601
3	0.613	1677
4	0.628	1656

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)		
1		~	615	100.000		
2		✓	348	100.000		
3		✓	311	100.000		
4		✓	250	100.000		

Origin-Destination Data

Demand (PCU/hr)

		То					
		1	2	3	4		
	1	0	330	53	232		
From	2	202	0	28	118		
	3	77	158	0	76		
	4	44	171	35	0		

Vehicle Mix

Heavy Vehicle %

		То					
		1	2	3	4		
	1	0	12	5	11		
From	2	19	0	15	10		
	3	4	0	0	4		
	4	10	3	4	0		

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.57	7.85	1.5	А
2	0.28	4.16	0.4	А
3	0.26	3.81	0.4	A
4	0.20	3.47	0.3	А

Main Results for each time segment

15:45 - 16:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	463	273	1258	0.368	460	0.6	4.991	A
2	262	240	1453	0.180	261	0.3	3.484	А
3	234	414	1424	0.164	233	0.2	3.076	A
4	188	328	1450	0.130	188	0.2	2.966	А

16:00 - 16:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	553	327	1227	0.450	552	0.9	5.904	А
2	313	287	1423	0.220	313	0.3	3.742	A
3	280	496	1373	0.204	279	0.3	3.348	A
4	225	393	1409	0.159	225	0.2	3.161	A

16:15 - 16:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	677	400	1186	0.571	675	1.4	7.786	А
2	383	351	1383	0.277	383	0.4	4.151	A
3	342	607	1305	0.262	342	0.4	3.800	A
4	275	481	1354	0.203	275	0.3	3.471	A

16:30 - 16:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	677	401	1185	0.571	677	1.5	7.854	A
2	383	352	1383	0.277	383	0.4	4.157	A
3	342	608	1305	0.262	342	0.4	3.806	А
4	275	481	1354	0.203	275	0.3	3.472	A

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	553	328	1227	0.451	555	0.9	5.961	A
2	313	289	1422	0.220	313	0.3	3.751	А
3	280	497	1372	0.204	280	0.3	3.357	A
4	225	393	1409	0.160	225	0.2	3.167	А

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	463	274	1257	0.368	464	0.7	5.042	A
2	262	241	1452	0.180	262	0.3	3.497	А
3	234	416	1422	0.165	234	0.2	3.086	A
4	188	329	1449	0.130	188	0.2	2.971	А

Junctions 10

PICADY 10 - Priority Intersection Module

Version: 10.1.0.1820

© Copyright TRL Software Limited, 2023

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the

solution

Filename: Ballymount Road Upper_Panda access.j10 **Path:** \\GLASGOWFILE\Jobs\SCT\2023\T&T\Panda Waste Facility, Ballymount\5. Technical\5. Modelling\Junctions 10 **Report generation date:** 28/11/2023 17:25:23

»2025+Dev, AM »2025+Dev, IP »2025+Dev, PM »2030+Dev, AM »2030+Dev, IP »2030+Dev, AM »2040+Dev, IP »2040+Dev, PM

Summary of junction performance

	АМ							IP						РМ					
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Network Residual Capacity	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Network Residual Capacity	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Network Residual Capacity	
		2025+Dev																	
Stream B-C		0.1	6.18	0.08	А	45 %		0.2	7.28	0.14	А	76 %		0.1	7.56	0.08	Α	80 %	
Stream B-A	D1	0.1	12.33	0.05	В	[Stream C-	D2	0.1	12.90	0.05	В	[Stream B-	D3	0.2	11.73	0.14	В	[Stream B-	
Stream C-AB		0.3	3.41	0.13	А	AB]		0.3	4.18	0.13	А	A]		0.1	5.28	0.05	А	A]	
		2030+Dev																	
Stream B-C		0.1	6.23	0.08	А	36 %		0.2	7.42	0.14	А	66 %		0.1	7.75	0.08	А	71 %	
Stream B-A	D4	0.1	12.93	0.05	В	[Stream C-	D5	0.1	13.58	0.05	В	[Stream B-	D6	0.2	12.27	0.15	В	[Stream B-	
Stream C-AB		0.4	3.32	0.15	А	AB]		0.4	4.10	0.14	А	A]		0.1	5.26	0.06	А	A]	
		2040+Dev																	
Stream B-C		0.1	6.26	0.08	А	31 %		0.2	7.50	0.14	А	60 %		0.1	7.88	0.08	А	65 %	
Stream B-A	D7	0.1	13.38	0.05	В	[Stream C-	D8	0.1	14.07	0.05	В	[Stream B-	D9	0.2	12.66	0.15	В	[Stream B-	
Stream C-AB		0.5	3.27	0.17	А	AB]		0.4	4.04	0.15	А	A]		0.1	5.24	0.06	А	A]	

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	
Location	
Site number	
Date	01/11/2023
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	ADSYSTRA\gmoon
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue	Calculate residual	RFC		Average Delay threshold	Queue threshold
Percentiles	capacity			(s)	(PCU)
	✓	Delay	0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2025+Dev	AM	ONE HOUR	00:00	01:30	15
D2	2025+Dev	IP	ONE HOUR	12:00	13:30	15
D3	2025+Dev	PM	ONE HOUR	16:45	18:15	15
D4	4 2030+Dev AM		ONE HOUR	00:00	01:30	15
D5	2030+Dev	IP	ONE HOUR	12:00	13:30	15
D6	2030+Dev	PM	ONE HOUR	16:45	18:15	15
D7	2040+Dev	AM	ONE HOUR	00:00	01:30	15
D8	8 2040+Dev IP		ONE HOUR	12:00	13:30	15
D9	2040+Dev	PM	ONE HOUR	16:45	18:15	15

Analysis Set Details

ID	Network flow scaling factor (%)
A1	100.000

2025+Dev, AM

Data Errors and Warnings

Severity	erity Area Item		Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	BRU / Panda Access	T-Junction	Two-way	Two-way	Two-way		0.66	A

Junction Network

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold	Network delay (s)	Network LOS
Left	Normal/unknown	45	Stream C-AB	0.66	A

Arms

Arms

Arm	Name	Description	Arm type
Α	BRU west		Major
в	Panda Access		Minor
С	BRU east		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Has right-turn storage	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
С	9.20			150.0	~	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm	Width at give-	Width at	Width at	Width at	Width at	Estimate flare	Flare length	Visibility to	Visibility to
	type	way (m)	5m (m)	10m (m)	15m (m)	20m (m)	length	(PCU)	left (m)	right (m)
в	One lane plus flare	10.00	6.30	3.60	3.30	3.30	✓	1.00	30	23

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
B-A	509	0.080	0.202	0.127	0.288
B-C	703	0.093	0.234	-	-
C-B	661	0.220	0.220	-	-

The slopes and intercepts shown above include custom intercept adjustments only.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2025+Dev	AM	ONE HOUR	00:00	01:30	15

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
Α		✓	251	100.000	
в		✓	62	100.000	
С		✓	1041	100.000	

Origin-Destination Data

Demand (PCU/hr)

		То				
		Α	в	С		
Farm	Α	0	34	217		
From	в	14	0	48		
	С	1014	27	0		

Vehicle Mix

Heavy Vehicle %

		То			
		Α	в	С	
F	Α	0	0	0	
From	в	0	0	0	
	С	0	0	0	

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-C	0.08	6.18	0.1	А
B-A	0.05	12.33	0.1	В
C-AB	0.13	3.41	0.3	А
C-A				
A-B				
A-C				

Main Results for each time segment

00:00 - 00:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	36	658	0.055	36	0.1	5.790	А
B-A	11	371	0.028	10	0.0	9.976	А
C-AB	64	1120	0.057	63	0.1	3.407	A
C-A	720			720			
A-B	26			26			
A-C	163			163			

00:15 - 00:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	43	648	0.067	43	0.1	5.948	A
B-A	13	344	0.037	13	0.0	10.847	В
C-AB	98	1213	0.081	98	0.2	3.229	A
C-A	838			838			
ΑB	31			31			
A-C	195			195			

00:30 - 00:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	53	635	0.083	53	0.1	6.181	A
B-A	15	307	0.050	15	0.1	12.325	В
C-AB	176	1345	0.131	176	0.3	3.080	A
C-A	970			970			
ΑB	37			37			
A-C	239			239			

00:45 - 01:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	53	635	0.083	53	0.1	6.182	A
B-A	15	307	0.050	15	0.1	12.334	В
C-AB	177	1345	0.131	177	0.3	3.086	A
C-A	969			969			
A-B	37			37			
A-C	239			239			

01:00 - 01:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	43	648	0.067	43	0.1	5.951	А
B-A	13	344	0.037	13	0.0	10.856	В
C-AB	98	1214	0.081	99	0.2	3.231	A
C-A	837			837			
ΑB	31			31			
A-C	195			195			

01:15 - 01:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	36	657	0.055	36	0.1	5.794	A
B-A	11	371	0.028	11	0.0	9.983	A
C-AB	64	1120	0.057	64	0.1	3.410	A
C-A	720			720			
A-B	26			26			
A-C	163			163			

2025+Dev, IP

Data Errors and Warnings

Severity	Area Item Description		Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

[Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
	1	BRU / Panda Access	T-Junction	Two-way	Two-way	Two-way		0.88	А

Junction Network

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold	Network delay (s)	Network LOS
Left	Normal/unknown	76	Stream B-A	0.88	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2025+Dev	IP	ONE HOUR	12:00	13:30	15

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		✓	503	100.000
в		✓	86	100.000
С		✓	721	100.000

Origin-Destination Data

Demand (PCU/hr)

		То					
		A	в	С			
Farm	Α	0	48	455			
From	в	13	0	73			
	С	683	38	0			

Vehicle Mix

	То				
		Α	в	С	
-	Α	0	0	0	
From	в	0	0	0	
	С	0	0	0	

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-C	0.14	7.28	0.2	А
B-A	0.05	12.90	0.1	В
C-AB	0.13	4.18	0.3	А
C-A				
A-B				
A-C				

Main Results for each time segment

12:00 - 12:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	55	616	0.089	55	0.1	6.403	А
B-A	10	361	0.027	10	0.0	10.242	В
C-AB	64	927	0.069	64	0.1	4.172	A
C-A	479			479			
A-B	36			36			
A-C	343			343			

12:15 - 12:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	66	599	0.110	66	0.1	6.748	A
B-A	12	333	0.035	12	0.0	11.210	В
C-AB	91	984	0.093	91	0.2	4.034	A
C-A	557			557			
ΑB	43			43			
A-C	409			409			

12:30 - 12:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	80	575	0.140	80	0.2	7.280	А
B-A	14	294	0.049	14	0.1	12.886	В
C-AB	143	1066	0.134	142	0.3	3.901	A
C-A	651			651			
A-B	53			53			
A-C	501			501			

12:45 - 13:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	80	575	0.140	80	0.2	7.283	A
B-A	14	293	0.049	14	0.1	12.895	В
C-AB	143	1066	0.134	143	0.3	3.905	A
C-A	651			651			
ΑB	53			53			
A-C	501			501			

13:00 - 13:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	66	599	0.110	66	0.1	6.755	A
B-A	12	333	0.035	12	0.0	11.221	В
C-AB	92	984	0.093	92	0.2	4.040	A
C-A	557			557			
ΑB	43			43			
A-C	409			409			

13:15 - 13:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	55	616	0.089	55	0.1	6.416	А
B-A	10	361	0.027	10	0.0	10.256	В
C-AB	65	927	0.070	65	0.1	4.180	A
C-A	478			478			
ΑB	36			36			
A-C	343			343			

2025+Dev, PM

Data Errors and Warnings

Severity Area Item Description		Description	
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	BRU / Panda Access	T-Junction	Two-way	Two-way	Two-way		0.95	A

Junction Network

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold	Network delay (s)	Network LOS
Left	Normal/unknown	80	Stream B-A	0.95	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	2025+Dev	PM	ONE HOUR	16:45	18:15	15

Demand overview (Traffic)

Arm	Linked arm Use O-D data		Average Demand (PCU/hr)	Scaling Factor (%)	
Α		~	650	100.000	
в		✓	83	100.000	
С		✓	308	100.000	

Origin-Destination Data

Demand (PCU/hr)

		т	o	
		A	в	С
Farm	Α	0	51	599
From	в	46	0	37
	С	288	20	0

Vehicle Mix

		То				
		Α	в	С		
-	Α	0	0	0		
From	в	0	0	0		
	С	0	0	0		

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	
B-C	0.08	7.56	0.1	А	
B-A 0.14		11.73	0.2	В	
C-AB	0.05	5.28	0.1	А	
C-A					
A-B					
A-C					

Main Results for each time segment

16:45 - 17:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	28	575	0.048	28	0.1	6.572	A
B-A	35	422	0.082	34	0.1	9.280	A
C-AB	22	703	0.031	22	0.0	5.282	A
C-A	210			210			
A-B	38			38			
A-C	451			451			

17:00 - 17:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	33	551	0.060	33	0.1	6.952	А
B-A	41	395	0.105	41	0.1	10.176	В
C-AB	28	714	0.040	28	0.1	5.245	А
C-A	249			249			
ΑB	46			46			
A-C	538			538			

17:15 - 17:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	41	517	0.079	41	0.1	7.558	А
B-A	51	358	0.142	50	0.2	11.716	В
C-AB	39	732	0.053	39	0.1	5.196	A
C-A	300			300			
A-B	56			56			
A-C	660			660			

17:30 - 17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	41	517	0.079	41	0.1	7.560	А
B-A	51	358	0.142	51	0.2	11.730	В
C-AB	39	732	0.053	39	0.1	5.200	А
C-A	300			300			
ΑB	56			56			
A-C	660			660			

17:45 - 18:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	33	551	0.060	33	0.1	6.957	A
B-A	41	395	0.105	42	0.1	10.191	В
C-AB	28	715	0.040	28	0.1	5.250	A
C-A	249			249			
ΑB	46			46			
A-C	538			538			

18:00 - 18:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	28	575	0.048	28	0.1	6.580	А
B-A	35	422	0.082	35	0.1	9.302	A
C-AB	22	703	0.031	22	0.0	5.284	A
C-A	210			210			
A-B	38			38			
A-C	451			451			

2030+Dev, AM

Data Errors and Warnings

Severity Area Item Desc		Description	
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	BRU / Panda Access	T-Junction	Two-way	Two-way	Two-way		0.66	A

Junction Network

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold	Network delay (s)	Network LOS
Left	Normal/unknown	36	Stream C-AB	0.66	А

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2030+Dev	AM	ONE HOUR	00:00	01:30	15

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
Α		~	266	100.000	
в		✓	62	100.000	
С		✓	1113	100.000	

Origin-Destination Data

Demand (PCU/hr)

		То				
From		Α	в	С		
	Α	0	34	232		
	в	14	0	48		
	С	1086	27	0		

Vehicle Mix

		То			
		Α	в	С	
-	Α	0	0	0	
From	в	0	0	0	
	С	0	0	0	

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-C	0.08	6.23	0.1	А
B-A	0.05	12.93	0.1	В
C-AB	0.15	3.32	0.4	А
C-A				
A-B				
A-C				

Main Results for each time segment

00:00 - 00:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	36	655	0.055	36	0.1	5.815	A
B-A	11	362	0.029	10	0.0	10.236	В
C-AB	70	1154	0.060	69	0.1	3.318	A
C-A	768			768			
ΑB	26			26			
A-C	175			175			

00:15 - 00:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	43	645	0.067	43	0.1	5.981	А
B-A	13	333	0.038	13	0.0	11.216	В
C-AB	110	1255	0.088	110	0.2	3.143	A
C-A	891			891			
A-B	31			31			
A-C	209			209			

00:30 - 00:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	53	631	0.084	53	0.1	6.226	A
B-A	15	294	0.052	15	0.1	12.919	В
C-AB	208	1396	0.149	207	0.4	3.029	A
C-A	1017			1017			
ΑB	37			37			
A-C	255			255			

00:45 - 01:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	53	631	0.084	53	0.1	6.227	A
B-A	15	294	0.052	15	0.1	12.928	В
C-AB	209	1397	0.150	209	0.4	3.037	A
C-A	1016			1016			
ΑB	37			37			
A-C	255			255			

01:00 - 01:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	43	645	0.067	43	0.1	5.986	A
B-A	13	333	0.038	13	0.0	11.228	В
C-AB	110	1256	0.088	111	0.2	3.149	A
C-A	890			890			
ΑB	31			31			
A-C	209			209			

01:15 - 01:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	36	655	0.055	36	0.1	5.820	А
B-A	11	362	0.029	11	0.0	10.244	В
C-AB	70	1155	0.061	70	0.1	3.324	A
C-A	768			768			
ΑB	26			26			
A-C	175			175			

2030+Dev, IP

Data Errors and Warnings

Severity	erity Area Item		y Area Item Description		Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.		

Junction Network

Junctions

[Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
	1	BRU / Panda Access	T-Junction	Two-way	Two-way	Two-way		0.86	А

Junction Network

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold	Network delay (s)	Network LOS
Left	Normal/unknown	66	Stream B-A	0.86	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D5	2030+Dev	IP	ONE HOUR	12:00	13:30	15

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	536	100.000
в		✓	86	100.000
С		✓	770	100.000

Origin-Destination Data

Demand (PCU/hr)

	То			
From		A	в	С
	Α	0	48	488
	в	13	0	73
	С	732	38	0

Vehicle Mix

	То			
		Α	в	С
-	Α	0	0	0
From	в	0	0	0
	С	0	0	0

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-C	0.14	7.42	0.2	А
B-A	0.05	13.58	0.1	В
C-AB	0.14	4.10	0.4	А
C-A				
A-B				
A-C				

Main Results for each time segment

12:00 - 12:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	55	611	0.090	55	0.1	6.471	A
B-A	10	351	0.028	10	0.0	10.530	В
C-AB	68	948	0.072	68	0.1	4.091	A
C-A	511			511			
A-B	36			36			
A-C	367			367			

12:15 - 12:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	66	592	0.111	66	0.1	6.837	А
B-A	12	321	0.036	12	0.0	11.627	В
C-AB	98	1010	0.097	98	0.2	3.949	А
C-A	594			594			
ΑB	43			43			
A-C	439			439			

12:30 - 12:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	80	566	0.142	80	0.2	7.412	А
B-A	14	279	0.051	14	0.1	13.570	В
C-AB	158	1099	0.143	157	0.4	3.822	A
C-A	690			690			
A-B	53			53			
A-C	537			537			

12:45 - 13:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	80	566	0.142	80	0.2	7.415	А
B-A	14	279	0.051	14	0.1	13.582	В
C-AB	158	1100	0.144	158	0.4	3.831	А
C-A	690			690			
ΑB	53			53			
A-C	537			537			

13:00 - 13:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	66	592	0.111	66	0.1	6.844	A
B-A	12	321	0.036	12	0.0	11.640	В
C-AB	99	1011	0.098	100	0.2	3.957	A
C-A	593			593			
ΑB	43			43			
A-C	439			439			

13:15 - 13:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	55	610	0.090	55	0.1	6.482	A
B-A	10	351	0.028	10	0.0	10.544	В
C-AB	69	948	0.073	69	0.1	4.099	A
C-A	511			511			
ΑB	36			36			
A-C	367			367			

2030+Dev, PM

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	BRU / Panda Access	T-Junction	Two-way	Two-way	Two-way		0.93	A

Junction Network

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold	Network delay (s)	Network LOS
Left	Normal/unknown	71	Stream B-A	0.93	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D6	2030+Dev	PM	ONE HOUR	16:45	18:15	15

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	693	100.000
в		✓	83	100.000
С		✓	328	100.000

Origin-Destination Data

Demand (PCU/hr)

		То				
		A	в	С		
_	Α	0	51	642		
From	в	46	0	37		
	С	308	20	0		

Vehicle Mix

	То			
		Α	в	С
-	Α	0	0	0
From	в	0	0	0
	С	0	0	0

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-C	0.08	7.75	0.1	А
B-A	0.15	12.27	0.2	В
C-AB	0.06	5.26	0.1	А
C-A				
A-B				
A-C				

Main Results for each time segment

16:45 - 17:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	28	568	0.049	28	0.1	6.665	A
B-A	35	413	0.084	34	0.1	9.509	A
C-AB	22	707	0.032	22	0.0	5.254	A
C-A	225			225			
A-B	38			38			
A-C	483			483			

17:00 - 17:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	33	542	0.061	33	0.1	7.077	А
B-A	41	384	0.108	41	0.1	10.506	В
C-AB	29	720	0.041	29	0.1	5.212	А
C-A	266			266			
A-B	46			46			
A-C	577			577			

17:15 - 17:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	41	505	0.081	41	0.1	7.745	A
B-A	51	344	0.147	50	0.2	12.258	В
C-AB	41	739	0.055	41	0.1	5.155	A
C-A	320			320			
A-B	56			56			
A-C	707			707			

17:30 - 17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	41	505	0.081	41	0.1	7.748	А
B-A	51	344	0.147	51	0.2	12.274	В
C-AB	41	739	0.055	41	0.1	5.157	A
C-A	320			320			
A-B	56			56			
A-C	707			707			

17:45 - 18:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	33	542	0.061	33	0.1	7.084	A
B-A	41	384	0.108	42	0.1	10.523	В
C-AB	29	720	0.041	29	0.1	5.216	A
C-A	266			266			
ΑB	46			46			
A-C	577			577			

18:00 - 18:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	28	567	0.049	28	0.1	6.673	А
B-A	35	413	0.084	35	0.1	9.532	A
C-AB	22	707	0.032	23	0.0	5.258	A
C-A	224			224			
ΑB	38			38			
A-C	483			483			

2040+Dev, AM

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

[Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
	1	BRU / Panda Access	T-Junction	Two-way	Two-way	Two-way		0.66	A

Junction Network

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold	Network delay (s)	Network LOS
Left	Normal/unknown	31	Stream C-AB	0.66	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D7	2040+Dev	AM	ONE HOUR	00:00	01:30	15

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	277	100.000
в		✓	62	100.000
С		✓	1162	100.000

Origin-Destination Data

Demand (PCU/hr)

		То					
		Α	в	С			
Farm	Α	0	34	243			
From	в	14	0	48			
	С	1135	27	0			

Vehicle Mix

	То				
		Α	в	С	
-	Α	0	0	0	
From	в	0	0	0	
	С	0	0	0	

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-C	0.08	6.26	0.1	А
B-A	0.05	13.38	0.1	В
C-AB	0.17	3.27	0.5	А
C-A				
A-B				
A-C				

Main Results for each time segment

00:00 - 00:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	36	653	0.055	36	0.1	5.834	А
B-A	11	356	0.030	10	0.0	10.424	В
C-AB	74	1177	0.063	74	0.1	3.261	A
C-A	801			801			
ΑB	26			26			
A-C	183			183			

00:15 - 00:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	43	642	0.067	43	0.1	6.005	А
B-A	13	326	0.039	13	0.0	11.488	В
C-AB	119	1283	0.093	119	0.2	3.094	А
C-A	925			925			
ΑB	31			31			
A-C	218			218			

00:30 - 00:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	53	628	0.084	53	0.1	6.260	A
B-A	15	285	0.054	15	0.1	13.365	В
C-AB	236	1432	0.165	234	0.5	3.009	A
C-A	1044			1044			
ΑB	37			37			
A-C	268			268			

00:45 - 01:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	53	628	0.084	53	0.1	6.260	A
B-A	15	285	0.054	15	0.1	13.376	В
C-AB	237	1432	0.165	237	0.5	3.018	A
C-A	1043			1043			
ΑB	37			37			
A-C	268			268			

01:00 - 01:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	43	642	0.067	43	0.1	6.011	А
B-A	13	326	0.039	13	0.0	11.501	В
C-AB	120	1284	0.093	121	0.2	3.102	A
C-A	925			925			
ΑB	31			31			
A-C	218			218			

01:15 - 01:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	36	653	0.055	36	0.1	5.842	А
B-A	11	356	0.030	11	0.0	10.432	В
C-AB	75	1178	0.063	75	0.1	3.267	A
C-A	800			800			
ΑB	26			26			
A-C	183			183			

2040+Dev, IP

Data Errors and Warnings

Severity	Area	ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	BRU / Panda Access	T-Junction	Two-way	Two-way	Two-way		0.86	А

Junction Network

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold	Network delay (s)	Network LOS
Left	Normal/unknown	60	Stream B-A	0.86	А

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D8	2040+Dev	IP	ONE HOUR	12:00	13:30	15

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		~	557	100.000
в		✓	86	100.000
С		✓	803	100.000

Origin-Destination Data

Demand (PCU/hr)

	То					
		A	в	С		
Farm	Α	0	48	509		
From	в	13	0	73		
	С	765	38	0		

Vehicle Mix

	То				
		Α	в	С	
-	Α	0	0	0	
From	в	0	0	0	
	С	0	0	0	

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-C	0.14	7.50	0.2	А
B-A	0.05	14.07	0.1	В
C-AB	0.15	4.04	0.4	А
C-A				
A-B				
A-C				

Main Results for each time segment

12:00 - 12:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	55	607	0.091	55	0.1	6.515	A
B-A	10	345	0.028	10	0.0	10.728	В
C-AB	71	962	0.074	71	0.1	4.037	A
C-A	533			533			
A-B	36			36			
A-C	383			383			

12:15 - 12:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	66	587	0.112	66	0.1	6.896	A
B-A	12	314	0.037	12	0.0	11.917	В
C-AB	104	1028	0.101	103	0.2	3.894	A
C-A	618			618			
ΑB	43			43			
A-C	458			458			

12:30 - 12:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	80	560	0.143	80	0.2	7.499	A
B-A	14	270	0.053	14	0.1	14.059	В
C-AB	169	1122	0.150	168	0.4	3.778	A
C-A	715			715			
A-B	53			53			
A-C	560			560			

12:45 - 13:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	80	560	0.144	80	0.2	7.503	А
B-A	14	270	0.053	14	0.1	14.072	В
C-AB	169	1123	0.151	169	0.4	3.781	А
C-A	715			715			
A-B	53			53			
A-C	560			560			

13:00 - 13:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	66	587	0.112	66	0.1	6.904	A
B-A	12	314	0.037	12	0.0	11.933	В
C-AB	104	1029	0.101	105	0.2	3.904	A
C-A	618			618			
ΑB	43			43			
A-C	458			458			

13:15 - 13:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	55	607	0.091	55	0.1	6.529	A
B-A	10	345	0.028	10	0.0	10.742	В
C-AB	72	963	0.074	72	0.1	4.044	A
C-A	533			533			
A-B	36			36			
A-C	383			383			

2040+Dev, PM

Data Errors and Warnings

Severity Area Item [ltem	Description
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	BRU / Panda Access	T-Junction	Two-way	Two-way	Two-way		0.92	A

Junction Network

Driving side	Lighting	Network residual capacity (%)	First arm reaching threshold	Network delay (s)	Network LOS
Left	Normal/unknown	65	Stream B-A	0.92	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D9	2040+Dev	PM	ONE HOUR	16:45	18:15	15

Demand overview (Traffic)

Arm	Linked arm Use O-D data		Average Demand (PCU/hr)	Scaling Factor (%)	
Α		~	721	100.000	
в		✓	83	100.000	
С		✓	342	100.000	

Origin-Destination Data

Demand (PCU/hr)

		т	o	
		Α	в	С
Farm	Α	0	51	670
From	в	46	0	37
	С	322	20	0

Vehicle Mix

		То				
		Α	в	С		
-	Α	0	0	0		
From	в	0	0	0		
	С	0	0	0		

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	
B-C	0.08	7.88	0.1	А	
B-A	0.15	12.66	0.2	В	
C-AB	0.06	5.24	0.1	А	
C-A					
A-B					
A-C					

Main Results for each time segment

16:45 - 17:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	28	563	0.050	28	0.1	6.728	А
B-A	35	406	0.085	34	0.1	9.663	А
C-AB	23	711	0.032	23	0.0	5.232	A
C-A	235			235			
A-B	38			38			
A-C	504			504			

17:00 - 17:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	33	536	0.062	33	0.1	7.162	А
B-A	41	376	0.110	41	0.1	10.737	В
C-AB	30	724	0.041	30	0.1	5.185	А
C-A	277			277			
A-B	46			46			
A-C	602			602			

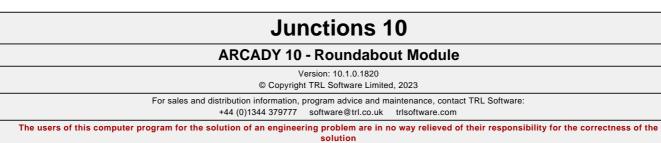
17:15 - 17:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	41	498	0.082	41	0.1	7.869	А
B-A	51	335	0.151	50	0.2	12.646	В
C-AB	42	745	0.057	42	0.1	5.123	А
C-A	334			334			
A-B	56			56			
A-C	738			738			

17:30 - 17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	41	498	0.082	41	0.1	7.876	А
B-A	51	335	0.151	51	0.2	12.663	В
C-AB	42	745	0.057	42	0.1	5.124	А
C-A	334			334			
ΑB	56			56			
A-C	738			738			

17:45 - 18:00


Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	33	536	0.062	33	0.1	7.169	A
B-A	41	376	0.110	42	0.1	10.755	В
C-AB	30	724	0.042	30	0.1	5.188	A
C-A	277			277			
ΑB	46			46			
A-C	602			602			

18:00 - 18:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	28	562	0.050	28	0.1	6.739	A
B-A	35	406	0.085	35	0.1	9.690	A
C-AB	23	711	0.032	23	0.0	5.236	A
C-A	235			235			
ΑB	38			38			
A-C	504			504			

1

Filename: Calmount Road_ Ballymount Road Upper Roundabout.j10 **Path:** \\GLASGOWFILE\Jobs\SCT\2023\T&T\Panda Waste Facility, Ballymount\5. Technical\5. Modelling\Junctions 10 **Report generation date:** 28/11/2023 17:26:10

«2040 + Dev, PM »Junction Network »Arms »Traffic Demand »Origin-Destination Data »Vehicle Mix »Results

Summary of junction performance

		A	M				I	P				Р	M		
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
							20	25							
Arm 1		0.3	4.97	0.19	А		0.7	6.47	0.39	А		1.3	9.65	0.57	A
Arm 2	D 4	0.3	3.63	0.21	А	DO	0.8	5.97	0.43	А	Da	1.6	10.65	0.61	В
Arm 3	D1	0.0	0.04	0.02	А	D2	0.0	0.04	0.01	А	D3	0.0	0.04	0.01	А
Arm 4		0.6	10.04	0.33	В		1.4	9.51	0.56	А		2.2	11.11	0.68	В
							2025	+ Dev							
Arm 1		0.2	4.99	0.17	А		0.6	6.51	0.37	А		1.3	9.85	0.57	А
Arm 2	D1	0.3	3.68	0.22	А	Dr	0.8	6.16	0.44	А	DC	1.6	11.05	0.62	В
Arm 3	D4	0.0	0.04	0.02	А	D5	0.0	0.04	0.01	А	D6	0.0	0.04	0.01	А
Arm 4		0.8	11.23	0.41	В		1.9	11.31	0.63	В		2.5	12.40	0.71	В
	2030														
Arm 1		0.3	5.27	0.20	А		0.8	7.21	0.44	А		1.8	11.99	0.63	В
Arm 2		0.3	3.76	0.23	А	D.	1.0	6.66	0.47	А	D.	2.2	14.27	0.69	В
Arm 3	D7	0.0	0.04	0.03	А	D8	0.0	0.04	0.01	А	D9	0.0	0.04	0.01	А
Arm 4		0.6	10.20	0.39	В		1.8	11.33	0.61	В		3.0	14.20	0.74	В
							2030	+ Dev							
Arm 1		0.3	5.29	0.19	А		0.8	7.27	0.42	А		1.8	12.29	0.64	В
Arm 2	D10	0.3	3.82	0.23	А	D11	1.0	6.91	0.48	А	D12	2.3	14.99	0.70	В
Arm 3	010	0.0	0.04	0.03	А		0.0	0.04	0.02	А	DIZ	0.0	0.04	0.01	Α
Arm 4		0.9	11.69	0.47	В		2.5	13.92	0.69	В		3.6	16.33	0.78	С
							20	40							
Arm 1		0.3	5.58	0.22	А		0.9	7.88	0.47	А		2.2	14.37	0.68	В
Arm 2	D13	0.4	3.90	0.24	А	D44	1.1	7.30	0.50	А	DAG	3.0	18.44	0.75	С
Arm 3	D13	0.0	0.04	0.03	А	D14	0.0	0.04	0.02	А	D15	0.0	0.04	0.01	А
Arm 4		0.9	14.10	0.43	В		2.2	13.15	0.66	В		3.7	17.38	0.79	С
					_		2040	+ Dev		_					
Arm 1		0.3	5.60	0.20	А		0.9	7.96	0.45	А		2.2	14.72	0.68	В
Arm 2	Dia	0.4	3.96	0.25	А	D47	1.2	7.60	0.51	А	Dia	3.1	19.56	0.76	С
Arm 3	D16	0.0	0.04	0.03	А	D17	0.0	0.04	0.02	А	D18	0.0	0.04	0.01	А
Arm 4		1.3	16.52	0.52	С		3.1	16.68	0.73	С		4.6	20.56	0.82	С

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	05/10/2023
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	ADSYSTRA\cgow
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate Queue Percentiles Calculate residual capacity		Average Delay threshold (s)	Queue threshold (PCU)	
		0.85	36.00	20.00	

Analysis Set Details

ID Network flow scaling factor (%)

A1 100.000

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D18	2040 + Dev	PM	ONE HOUR	15:45	17:15	15

2040 + Dev, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
1	BRU / Calmount Rd	Standard Roundabout		1, 2, 3, 4	12.73	В

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	12.73	В

Arms

Arms

Arm	Name	Description	No give-way line
1	Calmount Rd N		
2	BRU east		
3	Calmount Rd S		✓
4	BRU west		

Roundabout Geometry

Arm	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
1	4.30	5.77	12.8	9.8	29.5	49.0		
2	4.30	6.00	14.1	19.0	29.5	46.0		
3	3.00	3.00	0.0	3.0	13.0	0.0		
4	4.30	4.77	1.4	26.9	29.5	37.0		

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm Final slope Final intercept (PCU/hr)

1	0.569	1438
2	0.615	1578
3	0.000	99999
4	0.584	1354

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		~	507	100.000
2		✓	545	100.000
3		✓	845	100.000
4		✓	765	100.000

Origin-Destination Data

Demand (PCU/hr)

		То						
		1	2	3	4			
	1	0	14	493	0			
From	2	0	0	545	0			
	3	266	246	0	333			
	4	15	76	674	0			

Vehicle Mix

Heavy Vehicle %

			То		
		1	2	3	4
	1	0	31	5	0
From	2	0	0	3	0
	3	13	6	0	0
	4	100	6	5	0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.68	14.72	2.2	В
2	0.76	19.56	3.1	С
3	0.01	0.04	0.0	А
4	0.82	20.56	4.6	С

Main Results for each time segment

15:45 - 16:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	382	746	1014	0.376	379	0.6	5.956	A
2	410	872	1041	0.394	408	0.7	5.848	А
3	636	0	99999	0.006	636	0.0	0.038	A
4	576	385	1129	0.510	572	1.1	6.802	А

16:00 - 16:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	456	893	931	0.490	454	1.0	7.953	А
2	490	1045	934	0.524	488	1.1	8.298	A
3	760	0	99999	0.008	760	0.0	0.038	A
4	688	460	1085	0.634	685	1.8	9.475	A

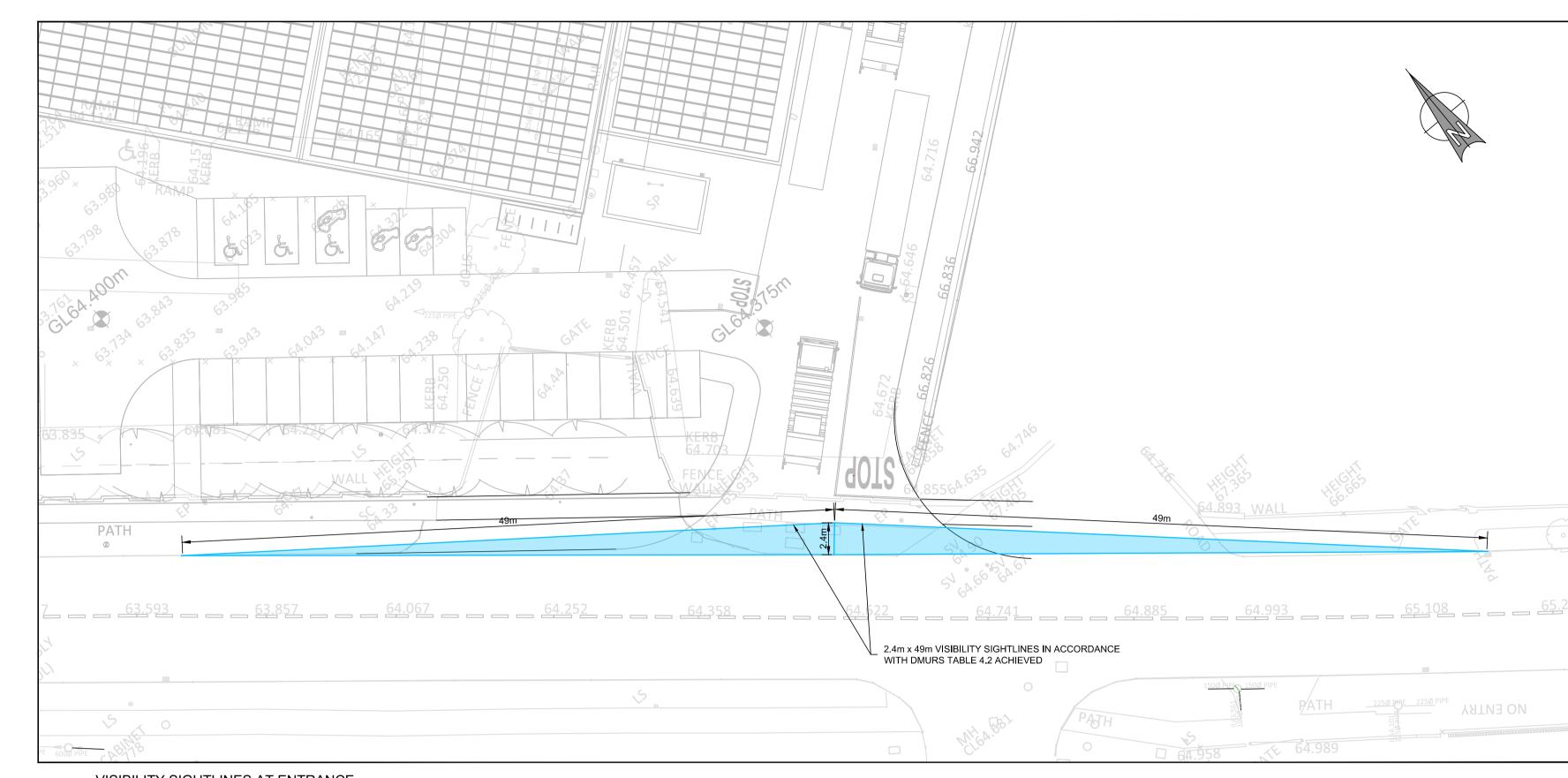
16:15 - 16:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	558	1086	821	0.680	554	2.1	14.002	В
2	600	1271	795	0.754	593	2.9	17.749	С
3	930	0	99999	0.009	930	0.0	0.038	А
4	842	564	1025	0.822	832	4.4	18.842	С

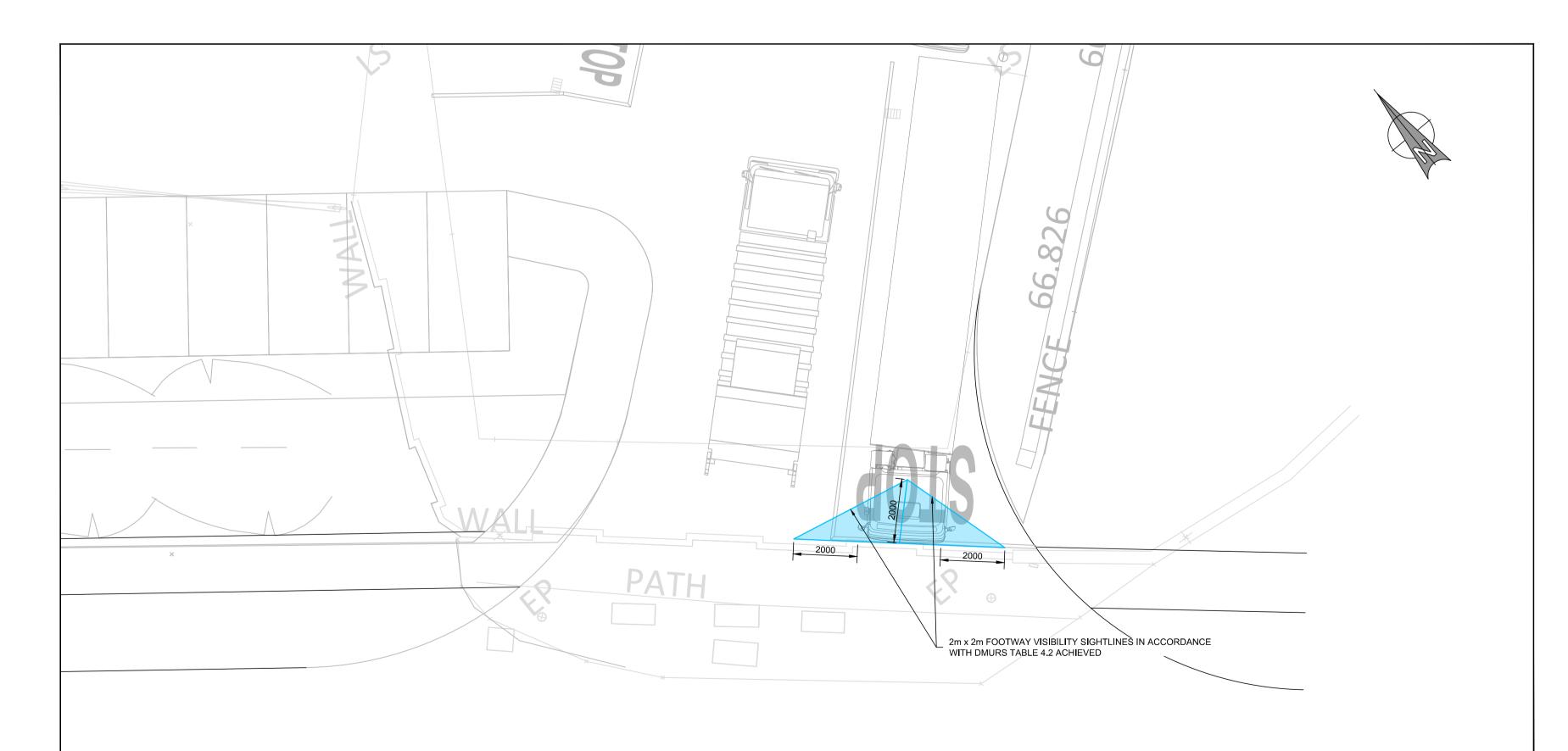
16:30 - 16:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	558	1096	815	0.685	558	2.2	14.724	В
2	600	1284	788	0.762	599	3.1	19.562	С
3	930	0	99999	0.009	930	0.0	0.038	A
4	842	564	1025	0.822	841	4.6	20.556	С

16:45 - 17:00

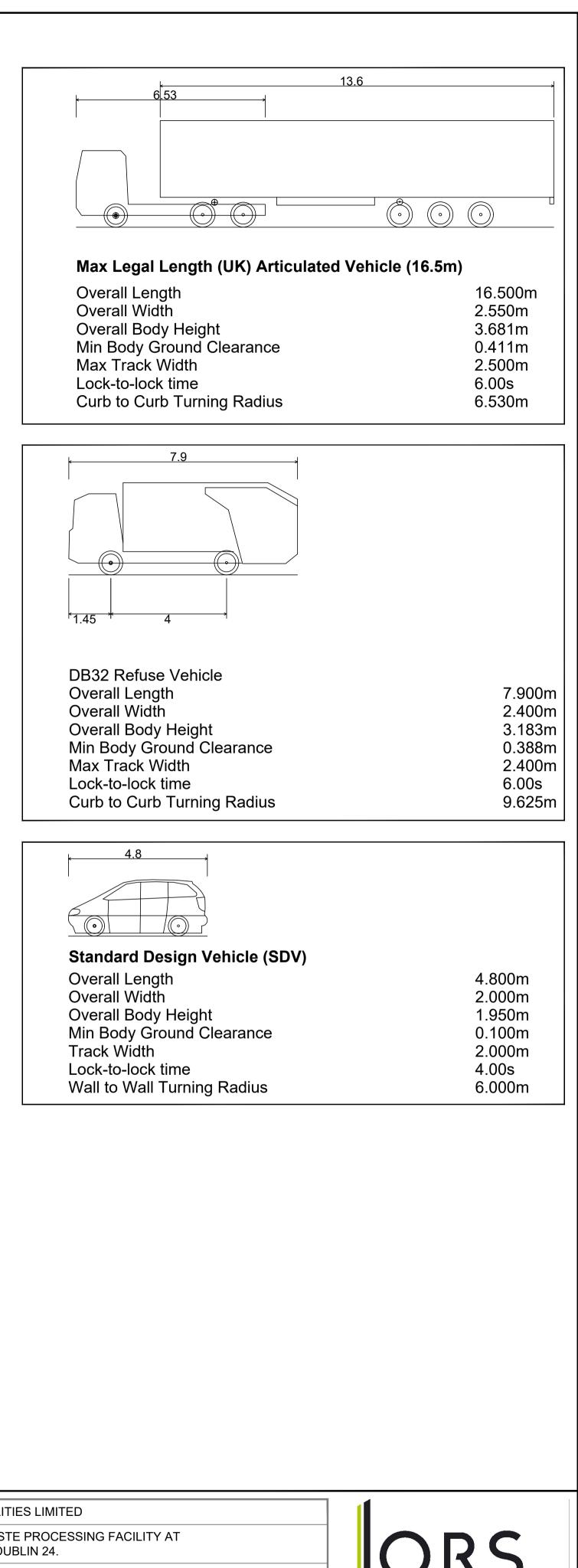

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	456	906	923	0.494	460	1.0	8.297	A
2	490	1063	923	0.531	498	1.2	8.889	A
3	760	0	99999	0.008	760	0.0	0.038	А
4	688	460	1085	0.634	699	1.9	10.142	В

17:00 - 17:15


Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	382	753	1010	0.378	383	0.6	6.076	А
2	410	883	1034	0.397	412	0.7	5.996	А
3	636	0	99999	0.006	636	0.0	0.038	A
4	576	385	1129	0.510	579	1.1	6.986	A

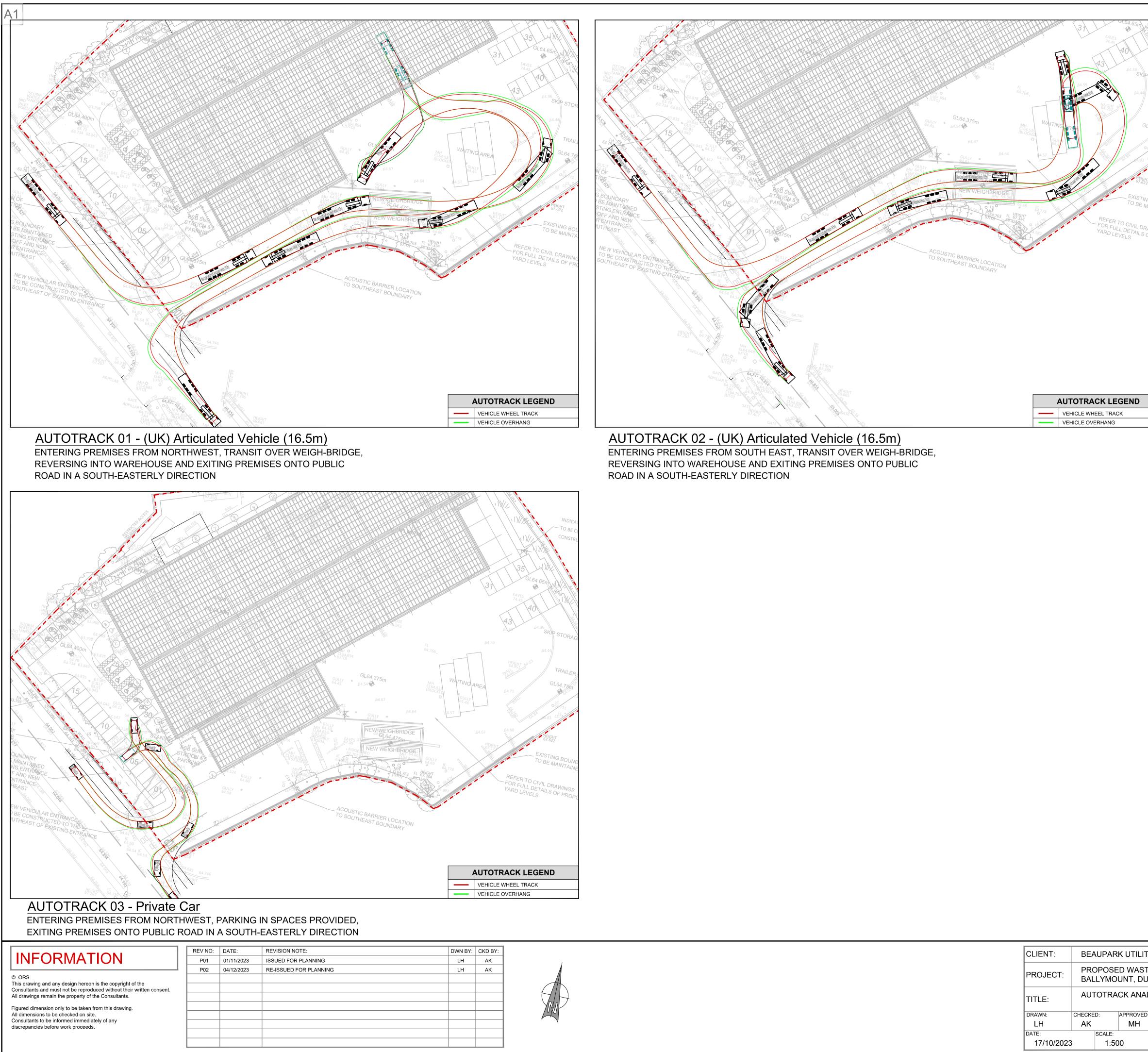
APPENDIX D – DRAWINGS

VISIBILITY SIGHTLINES AT ENTRANCE SCALE 1:250

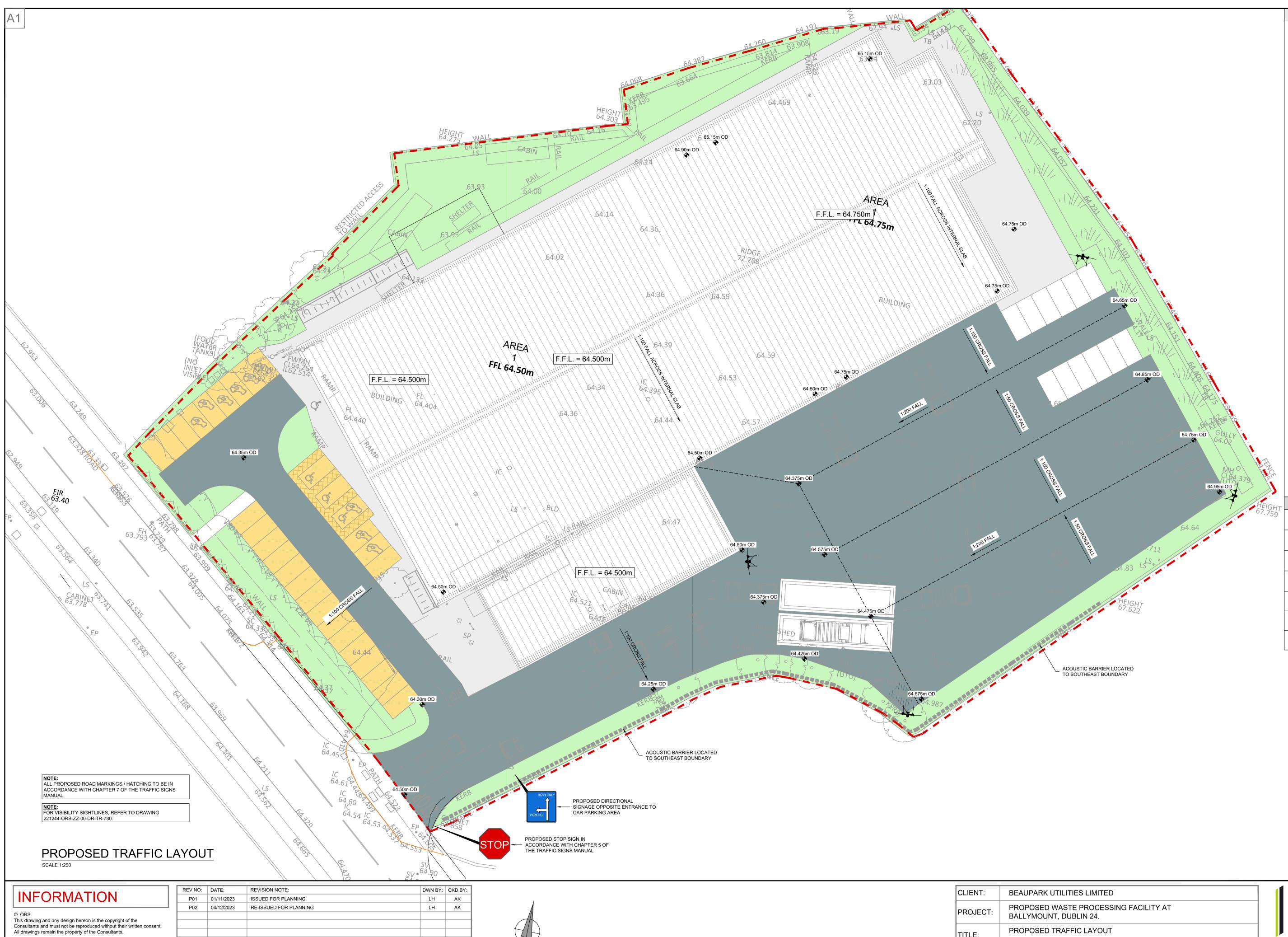

EXISTING FOOTWAY VISIBILITY SIGHTLINES AT ENTRANCE

SCALE 1:100

	REV NO:	DATE:	REVISION NOTE:	DWN BY:	CKD BY:
INFORMATION	P01	04/12/2023	ISSUED FOR PLANNING	LH	AK
© ORS This drawing and any design hereon is the copyright of the Consultants and must not be reproduced without their written consent. All drawings remain the property of the Consultants. Figured dimension only to be taken from this drawing. All dimensions to be checked on site.					
Consultants to be informed immediately of any discrepancies before work proceeds.					


A1

CLIENT:	BEA	UPAR	K UTILITI
PROJECT:	PROPOSED WAST BALLYMOUNT, DU		
TITLE:	VISIBILITY SI		' SIGHTLI
DRAWN:	CHECKE	D:	APPROVED:
LH	AK		МН
DATE:		SCALE:	1
28/11/2023	3	AS	SHOWN


VED: JOB NO: I 221244 DRAWING NO: /N 221244-ORS-ZZ-00-DR-TR-731 PO1

Mullingar | Dublin | Galway | Donegal | Cork T: +353 1 5242060 | W: www.ors.ie | E: info@ors.ie ISO 9001:2015 QUALITY ASSURED COMPANY

CLIENT:	BEAUPARK UTILITIES	LIMITED		
PROJECT:	PROPOSED WASTE P BALLYMOUNT, DUBLI	ROCESSING FACILITY AT N 24.		
TITLE:	AUTOTRACK ANALYSIS			
DRAWN:	CHECKED: APPROVED: AK MH	JOB NO: 221244	REV:	
DATE: 17/10/2023	3 SCALE: 3 1:500	DRAWING NO: 221244-ORS-ZZ-00-DR-TR-730	- P02	Mullingar Dublin Galway Donegal Cork T: +353 1 5242060 W: www.ors.ie E: info@ors.ie ISO 9001:2015 QUALITY ASSURED COMPANY

6.53	
Max Legal Length (UK) Articulated Vehi	cle (16.5m)
Overall Length Overall Width Overall Body Height Min Body Ground Clearance Max Track Width Lock-to-lock time Curb to Curb Turning Radius	16.500m 2.550m 3.681m 0.411m 2.500m 6.00s 6.530m
Standard Design Vehicle (SDV)	
Overall Length	4.800m
Overall Width	2.000m 1.950m
Overall Body Height Min Body Ground Clearance	0.100m
Track Width	2.000m
Lock-to-lock time	4.00s

Figured dimension only to be taken from this drawing.
All dimensions to be checked on site.
Consultants to be informed immediately of any
discrepancies before work proceeds.

1	01/11/2023	ISSUED FOR PLANNING	LH	AK
2	04/12/2023	RE-ISSUED FOR PLANNING	LH	AK

		CLIENT:	BEAU	PARK	K UTILITIE
A		PROJECT:			D WASTE JNT, DUB
		TITLE:	PROF	OSE	O TRAFFI
		DRAWN:	CHECKED:	A	APPROVED:
N		LH	AK		MH
		DATE:	SC	CALE:	
		09/10/2023	}	1:250)
	IS.EN.ISO 9001:2015 Cert. no. Q3324				

GENERAL NOTES

1. THE CONTRACTOR SHOULD READ THIS ROAD SPECIFICATION IN CONJUNCTION WITH THE RELEVANT TYPICAL DETAILS.

- 2. JOINTS BETWEEN NEW ROAD CONSTRUCTION AND EXISTING ROADS SHALL BE AS PER THE DETAILS IN TII-CC-SCD-00703. THE EDGES OF THE EXISTING CARRIAGEWAY TO BE CUT BACK BY 0.5m WITH A ROTARY SAW TO FORM A VERTICAL FACE AND FRAMED IN ACCORDANCE WITH TII-CC-SCD-00703 INCLUDE FOR ALL ADDITIONAL EXCAVATION AND FILLING TO ACHIEVE REQUIRED DEPTH OF SUB BASE WHERE NEW AND EXISTING WORKS MEET.
- 3. ALL MANHOLES RAISED TO MEET THE NEW ROAD LEVEL WHERE REQUIRED. DISHING CONCRETE TO MANHOLE COVERS AND FRAMES AND INCLUDE FOR SETTING FRAME IN CONCRETE TO NEW OR ADJUSTED LEVELS WHERE REQUIRED PROTECT COVER AND FRAME DURING COURSE OF WORKS. ALL GULLIES TO MEET PROPOSED NEW SURFACE LEVEL WHERE REQUIRED
- 4. FOOTPATH EXPANSION JOINTS SHALL BE NEATLY FORMED IN STRAIGHT LINES AT NOT GRATER THAN 3m CENTERS AND SO ARRANGED AS TO COINCIDE WITH THE JOINTS IN THE KERB JOINTS SHALL BE FORMED BY INSERTING A DOUBLE LAYER OF ROOFING FELT OR OTHER APPROVED METHODS. WHICH SHALL EXTEND THE FULL DEPTH OF THE SLAB AND BE FINISHED OFF NEATLY AT THE SURFACE. THE CONTRACTOR SHALL ENSURE THE DOUBLE LAYER OF ROOFING FELT IS SUPPORTED IN THE JOINT AND HELD IN A STRAIGHT LINE DURING THE CONSTRUCTION PROCESS.
- 5. IN-SITU CONCRETE SHALL BE POURED ON A SUB-BASE OF 150mm NOMINAL THICK OF GRANULAR MATERIAL COMPLYING WITH CLAUSE 808. CONCRETE SHALL BE LAID AND COMPACTED IN COMPLIANCE WITH THE 800 SERIES OF THE SPECIFICATION FOR ROAD WORKS. ALL MATERIALS SPECIFIED SHALL COMPLY WITH REQUIREMENTS OF SR 21 (ANNEX E AMENDED TO I.S. EN 13242:2013 AND BASED ON THE REPORT OF PYRITE PANEL 2012) AGGREGATED FOR USE IN UNBOUND & HYDRAULICALLY BOUND GRANULAR MATERIALS
- 6. THE VERTICAL ALIGNMENT OF THE FINISHED SURFACE SHALL NOT DEPART FROM THE DESIGN LEVEL BY MORE THAN +-10m AT ANY POINT . THE MAXIMUM DEVIATION OF THE SURFACE UNDER A STRAIGHT EDGE SHALL NOT BE GREATER THAN 5mm IN 3m. THE CONTRACTOR SHALL ALLOW FOR THE PROTECTION OF ALL EXISTING SERVICE CHAMBERS. MANHOLES AND DUCTING THROUGHOUT THE WORKS ALL CONCRETE JOINTS AND EDGES SHALL BE BULL NOSED.
- 7. CBR TESTS SHALL BE CARRIED OUT ON THE SUBGRADE AT FORMATION LEVEL. THE RATE OF THE TESTS SHALL BE 1 TEST PER 50 LINEAR METERS OF ROAD. WHERE TEST VALUES VARY SIGNIFICANTLY ADDITIONAL TESTS MAY BE REQUIRED AT THE DISCRETION OF THE ENGINEER
- 8. CAPPING LAYER SPECIFIED BASED ON ESTIMATED SUBGRADE CBR VALUE OF 8%. CAPPING LAYER MAY BE REDUCED/INCREASED SUBJECT TO ACTUAL SUBGRADE CBR TEST VALUES OBTAINED ON SITE.

LEGEND					
	PROPOSED FOOTPATH				
	PROPOSED ROAD PAVEMENT				
	PROPOSED GREEN/LANDSCAPE AREA				
	PROPOSED PERMEABLE BLOCK PAVING				
	PROPOSED TACTILE PAVING (UNCONTROLLED)				
0.00m 🜩	PROPOSED LEVELS				
STOP	RUS 027: STOP SIGN				

TIES LIMITED			
TE PROCESSING FACILITY AT UBLIN 24.			
FIC LAYOUT			
D: JOB NO: 221244			
DRAWING NO: 221244-ORS-2	Z-00-DR-TR-700	P02	Mullingar Dublin Galway Donegal Cork T: +353 1 5242060 W: www.ors.ie E: info@ors.ie ISO 9001:2015 QUALITY ASSURED COMPANY

SYSTRA provides advice on transport, to central, regional and local government, agencies, developers, operators and financiers.

A diverse group of results-oriented people, we are part of a strong team of professionals worldwide. Through client business planning, customer research and strategy development we create solutions that work for real people in the real world.

For more information visit <u>www.systra.co.uk</u>

BIRMINGHAM, ALPHA TOWER 8TH FLOOR CROWNE PLAZA, SUFFOLK STREET

BIRMINGHAM UNITED KINGDOM B1 1TT TEL: +441213934841

BIRMINGHAM, NEWALL ST 5TH FLOOR LANCASTER HOUSE 67 NEWHALL STREET

BIRMINGHAM UNITED KINGDOM B3 1NQ TEL: +44 (0)121 233 7680

DUBLIN 2ND FLOOR RIVERVIEW HOUSE 21-23 CITY QUAY REPUBLIC OF IRELAND DUBLIN 2 TEL: +353 (0)1 905 3961

EDINBURGH, THISTLE ST PROSPECT HOUSE 5 THISTLE STREET EDINBURGH UNITED KINGDOM EH2 1DF TEL: +44 (0)131 344 4950 Tel: +44 (0)131 220 6966 GLASGOW, ST VINCENT ST 124 ST VINCENT STREET GLASGOW UNITED KINGDOM G2 5HF TEL: +44 (0)141 225 4400

GLASGOW, WEST GEORGE ST 250 WEST GEORGE STREET GLASGOW UNITED KINGDOM G2 4QY TEL: +44 (0)141 221 4030

LEEDS 100 WELLINGTON STREET LEEDS UNITED KINGDOM LS1 1BA TEL: +44 (0)113 397 9740

LONDON, 15 OLD BAILEY SEVENTH FLOOR 15 OLD BAILEY LONDON UNITED KINGDOM EC4M 7EF TEL: +44 (0)20 7529 6500

LONDON, 5 OLD BAILEY PROSPECT BUSINESS CENTRE 5 OLD BAILEY LONDON UNITED KINGDOM EC4M 7BA TEL: +44 (0)203 714 4400 MANCHESTER 25TH FLOOR CITY TOWER PICCADILLY PLAZA MANCHESTER UNITED KINGDOM M1 4BT TEL: +44 (0)161 236 0282 TEL: +44 (0)161 831 5600

NEWCASTLE FLOOR B SOUTH CORRIDOR, MILBURN HOUSE DEAN STREET

NEWCASTLE UNITED KINGDOM NE1 1LE TEL: + 44 (0)191 260 0135

WOKING DUKES COURT DUKE STREET WOKING SURREY UNITED KINGDOM GU21 5BH Tel: +44 (0)483 728051

